Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Biodivers ; 21(3): e202400043, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38361278

RESUMO

Four series of novel 1,3,4-oxadiazole/1,2,4-triazole hybrids of phthalide derivatives were designed and synthesized to search for novel potential antifungal agents. Preliminary antifungal activity assay results showed that compounds 4 a, 4 b, 4 m, 5 b, 5 f, 5 h, and 7 h exhibited moderate to excellent inhibitory activity against some phytopathogenic fungi. Among them, compound 5 b displayed the most outstanding antifungal effects against V. mali and S. sclerotiorum, with the EC50 mean of 3.96 µg/mL and 5.60 µg/mL, respectively, which was superior to those of commercial fungicides hymexazol and chlorothalonil. Furthermore, compound 5 b could completely suppress the spore germination of V. mali at a concentration of 10 µg/mL. Finally, molecular docking revealed that the potential target for the antifungal activity of compound 5 b was succinate dehydrogenase (SDH). This research provides novel candidate compounds for the prevention of phytopathogenic fungi.


Assuntos
Antifúngicos , Benzofuranos , Fungos , Oxidiazóis , Triazóis , Antifúngicos/farmacologia , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular
2.
J Am Chem Soc ; 145(40): 21904-21914, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37771004

RESUMO

Transport of water across cell membranes is a fundamental process for important biological functions. Herein, we focused our research on a new type of symmetrical saccharide rim-functionalized pillar[5]arene (PA-S) artificial water channels with variable pore structures. To point out the versatility of PA-S channels, we systematically varied the nature of anchoring/gate keepers d-mannoside, d-mannuronic acid, or sialic acid H-bonding groups on lateral pillar[5]arene (PA) arms, known as good membrane adhesives, to best describe the influence of the chemical structure on their transport activity. The control of hydrophobic membrane binding-hydrophilic water binding balance is an important feature influencing the channels' structuration and efficiency for a proper insertion into bilayer membranes. The glycosylated PA channels' transport performances were assessed in lipid bilayer membranes, and the channels were able to transport water at high rates (∼106-107 waters/s/channel within 1 order of magnitude as for aquaporins), serving as selective proton railways with total Na+ and K+ rejection. Molecular simulation substantiates the idea that the PAs can generate supramolecular pores, featuring hydrophilic carbohydrate gate-keepers that serve as water-sponge relays at the channel entrance, effectively absorbing and redirecting water within the channel. The present channels may be regarded as a rare biomimetic example of artificial channels presenting proton vs cation transport selectivity performances.

3.
Crit Rev Food Sci Nutr ; 62(18): 5029-5055, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33554629

RESUMO

Biodegradable films constructed from food ingredients are being developed for food coating and packaging applications to create more sustainable and environmentally friendly alternatives to plastics and other synthetic film-forming materials. In particular, there is a focus on the creation of active packaging materials from natural ingredients, especially plant-based ones. The film matrix is typically constructed from film-forming food components, such as proteins, polysaccharides and lipids. These matrices can be fortified with active ingredients, such as antioxidants and antimicrobials, so as to enhance their functional properties. Edible active films must be carefully designed to have the required optical, mechanical, barrier, and preservative properties needed for commercial applications. This review focuses on the fabrication, properties, and functional performance of edible films constructed from natural active ingredients. It provides an overview of the type of active ingredients that can be used, how they interact with the film matrix, how they migrate through the films, and how they are released. It also discusses the potential application of these active films for food preservation. Finally, future trends are highlighted and areas where further research are required are discussed.


Assuntos
Anti-Infecciosos , Filmes Comestíveis , Antioxidantes , Embalagem de Alimentos , Conservação de Alimentos
4.
Acta Pharmacol Sin ; 43(4): 788-796, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34349236

RESUMO

An epidemic of pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is spreading worldwide. SARS-CoV-2 relies on its spike protein to invade host cells by interacting with the human receptor protein Angiotensin-Converting Enzymes 2 (ACE2). Therefore, designing an antibody or small-molecular entry blockers is of great significance for virus prevention and treatment. This study identified five potential small molecular anti-virus blockers via targeting SARS-CoV-2 spike protein by combining in silico technologies with in vitro experimental methods. The five molecules were natural products that binding to the RBD domain of SARS-CoV-2 was qualitatively and quantitively validated by both native Mass Spectrometry (MS) and Surface Plasmon Resonance (SPR). Anti-viral activity assays showed that the optimal molecule, H69C2, had a strong binding affinity (dissociation constant KD) of 0.0947 µM and anti-virus IC50 of 85.75 µM.


Assuntos
Tratamento Farmacológico da COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Ligação Proteica , SARS-CoV-2
5.
Anal Chem ; 92(20): 13702-13710, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32955856

RESUMO

We describe an efficient decision tree searching strategy (DTSS) to boost the identification of cross-linked peptides. The DTSS approach allows the identification of a wealth of complementary information to facilitate the construction of more protein-protein interaction networks for human cell lysate, which was tested by the use of a recently reported cross-linking data set (ACS Cent. Sci. 2019, 5, 1514-1522). A variant of the PhoX-linker, named pDSPE, was synthesized and applied to cross-link Escherichia coli cell lysate to demonstrate that the acquisition of doubly charged ions can significantly improve identification results. The method can be seamlessly integrated to other search engines to maximize the number of identified cross-links.


Assuntos
Reagentes de Ligações Cruzadas/química , Árvores de Decisões , Espectrometria de Massas/métodos , Peptídeos/análise , Cromatografia Líquida de Alta Pressão , Escherichia coli/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Ácidos Fosforosos/química , Mapas de Interação de Proteínas
6.
Planta Med ; 86(5): 312-318, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32045947

RESUMO

Cajanonic acid A (CAA), a prenylated stilbene derivative extracted from the leaves of pigeon pea (Cajanus cajan), has been reported to possess inhibitory activity on the peroxisome proliferator-activated receptor gamma (PPARγ) and protein tyrosine phosphatase 1B (PTP1B). Its hypoglycemic activity in rats is comparable to that of the approved antidiabetic agent rosiglitazone. Therefore, CAA is a potential candidate for the treatment of type 2 diabetes and a lead compound for the discovery of novel hypoglycemic drugs. To achieve a thorough understanding of the biological behavior of CAA in vivo, our current study was designed to investigate the pharmacokinetics, bioavailability, distribution, and excretion of CAA in rats by UPLC-MS/MS. Chromatographic separation was performed on BEHC18 column (2.1 mm × 50 mm, 1.7 µm). Quantification was performed under the negative ion mode by using single reaction monitoring (SRM) of the transitions of m/z 353.14 → 309.11 for CAA and m/z 269.86 → 224.11 for genistein, respectively. Standard calibration curve showed excellent linearity (r2 > 0.99) within the range of 2 - 800 ng/mL. The accuracies and precisions were within the acceptance limits (all < 20%). CAA was quickly absorbed into bloodstream and distributed rapidly and widely to various tissues. The excretion ratio of CAA in the 3 main pathways via bile, feces, and urine was only 5.17%. These results indicate that CAA was quickly and thoroughly metabolized in vivo and excreted mainly as metabolites.


Assuntos
Diabetes Mellitus Tipo 2 , Espectrometria de Massas em Tandem , Animais , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Distribuição Tecidual
7.
Nat Chem Biol ; 13(5): 514-521, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28288108

RESUMO

Inducing macromolecular interactions with small molecules to activate cellular signaling is a challenging goal. PROTACs (proteolysis-targeting chimeras) are bifunctional molecules that recruit a target protein in proximity to an E3 ubiquitin ligase to trigger protein degradation. Structural elucidation of the key ternary ligase-PROTAC-target species and its impact on target degradation selectivity remain elusive. We solved the crystal structure of Brd4 degrader MZ1 in complex with human VHL and the Brd4 bromodomain (Brd4BD2). The ligand folds into itself to allow formation of specific intermolecular interactions in the ternary complex. Isothermal titration calorimetry studies, supported by surface mutagenesis and proximity assays, are consistent with pronounced cooperative formation of ternary complexes with Brd4BD2. Structure-based-designed compound AT1 exhibits highly selective depletion of Brd4 in cells. Our results elucidate how PROTAC-induced de novo contacts dictate preferential recruitment of a target protein into a stable and cooperative complex with an E3 ligase for selective degradation.


Assuntos
Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteólise/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Sequência de Aminoácidos , Proteínas de Ciclo Celular , Cristalografia por Raios X , Dipeptídeos/química , Dipeptídeos/farmacologia , Elonguina , Compostos Heterocíclicos com 3 Anéis/química , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Termodinâmica , Proteína Supressora de Tumor Von Hippel-Lindau/química , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
8.
Mol Cell Proteomics ; 14(3): 596-608, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25561500

RESUMO

The lipid raft concept proposes that membrane environments enriched in cholesterol and sphingolipids cluster certain proteins and form platforms to integrate cell signaling. In cardiac muscle, caveolae concentrate signaling molecules and ion transporters, and play a vital role in adrenergic regulation of excitation-contraction coupling, and consequently cardiac contractility. Proteomic analysis of cardiac caveolae is hampered by the presence of contaminants that have sometimes, erroneously, been proposed to be resident in these domains. Here we present the first unbiased analysis of the proteome of cardiac caveolae, and investigate dynamic changes in their protein constituents following adrenoreceptor (AR) stimulation. Rat ventricular myocytes were treated with methyl-ß-cyclodextrin (MßCD) to deplete cholesterol and disrupt caveolae. Buoyant caveolin-enriched microdomains (BCEMs) were prepared from MßCD-treated and control cell lysates using a standard discontinuous sucrose gradient. BCEMs were harvested, pelleted, and resolubilized, then alkylated, digested, and labeled with iTRAQ reagents, and proteins identified by LC-MS/MS on a LTQ Orbitrap Velos Pro. Proteins were defined as BCEM resident if they were consistently depleted from the BCEM fraction following MßCD treatment. Selective activation of α-, ß1-, and ß2-AR prior to preparation of BCEMs was achieved by application of agonist/antagonist pairs for 10 min in populations of field-stimulated myocytes. We typically identified 600-850 proteins per experiment, of which, 249 were defined as high-confidence BCEM residents. Functional annotation clustering indicates cardiac BCEMs are enriched in integrin signaling, guanine nucleotide binding, ion transport, and insulin signaling clusters. Proteins possessing a caveolin binding motif were poorly enriched in BCEMs, suggesting this is not the only mechanism that targets proteins to caveolae. With the notable exception of the cavin family, very few proteins show altered abundance in BCEMs following AR activation, suggesting signaling complexes are preformed in BCEMs to ensure a rapid and high fidelity response to adrenergic stimulation in cardiac muscle.


Assuntos
Agonistas Adrenérgicos/farmacologia , Cavéolas/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Proteoma/isolamento & purificação , Proteômica/métodos , Antagonistas Adrenérgicos/farmacologia , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Ratos , Transdução de Sinais , beta-Ciclodextrinas/farmacologia
9.
Mol Cell Proteomics ; 14(11): 3072-86, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26364976

RESUMO

Equine grass sickness (EGS) is an acute, predominantly fatal, multiple system neuropathy of grazing horses with reported incidence rates of ∼2%. An apparently identical disease occurs in multiple species, including but not limited to cats, dogs, and rabbits. Although the precise etiology remains unclear, ultrastructural findings have suggested that the primary lesion lies in the glycoprotein biosynthetic pathway of specific neuronal populations. The goal of this study was therefore to identify the molecular processes underpinning neurodegeneration in EGS. Here, we use a bottom-up approach beginning with the application of modern proteomic tools to the analysis of cranial (superior) cervical ganglion (CCG, a consistently affected tissue) from EGS-affected patients and appropriate control cases postmortem. In what appears to be the proteomic application of modern proteomic tools to equine neuronal tissues and/or to an inherent neurodegenerative disease of large animals (not a model of human disease), we identified 2,311 proteins in CCG extracts, with 320 proteins increased and 186 decreased by greater than 20% relative to controls. Further examination of selected proteomic candidates by quantitative fluorescent Western blotting (QFWB) and subcellular expression profiling by immunohistochemistry highlighted a previously unreported dysregulation in proteins commonly associated with protein misfolding/aggregation responses seen in a myriad of human neurodegenerative conditions, including but not limited to amyloid precursor protein (APP), microtubule associated protein (Tau), and multiple components of the ubiquitin proteasome system (UPS). Differentially expressed proteins eligible for in silico pathway analysis clustered predominantly into the following biofunctions: (1) diseases and disorders, including; neurological disease and skeletal and muscular disorders and (2) molecular and cellular functions, including cellular assembly and organization, cell-to-cell signaling and interaction (including epinephrine, dopamine, and adrenergic signaling and receptor function), and small molecule biochemistry. Interestingly, while the biofunctions identified in this study may represent pathways underpinning EGS-induced neurodegeneration, this is also the first demonstration of potential molecular conservation (including previously unreported dysregulation of the UPS and APP) spanning the degenerative cascades from an apparently unrelated condition of large animals, to small animal models with altered neuronal vulnerability, and human neurological conditions. Importantly, this study highlights the feasibility and benefits of applying modern proteomic techniques to veterinary investigations of neurodegenerative processes in diseases of large animals.


Assuntos
Precursor de Proteína beta-Amiloide/genética , Doenças dos Cavalos/genética , Doenças Neurodegenerativas/genética , Deficiências na Proteostase/genética , Ubiquitina/genética , Proteínas tau/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Feminino , Gânglios Sensitivos/química , Gânglios Sensitivos/metabolismo , Gânglios Sensitivos/patologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Doenças dos Cavalos/diagnóstico , Doenças dos Cavalos/metabolismo , Doenças dos Cavalos/patologia , Cavalos , Masculino , Anotação de Sequência Molecular , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteômica , Deficiências na Proteostase/diagnóstico , Deficiências na Proteostase/metabolismo , Deficiências na Proteostase/patologia , Ubiquitina/metabolismo , Proteínas tau/metabolismo
10.
Biochem J ; 469(1): 25-32, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25891661

RESUMO

Protein S-glutathionylation is a reversible post-translational modification regulating sulfhydryl homeostasis. However, little is known about the proteins and pathways regulated by S-glutathionylation in whole organisms and current approaches lack the sensitivity to examine this modification under basal conditions. We now report the quantification and identification of S-glutathionylated proteins from animal tissue, using a highly sensitive methodology combining high-accuracy proteomics with tandem mass tagging to provide precise, extensive coverage of S-glutathionylated targets in mouse liver. Critically, we show significant enrichment of S-glutathionylated mitochondrial and Krebs cycle proteins, identifying that S-glutathionylation is heavily involved in energy metabolism processes in vivo. Furthermore, using mice nulled for GST Pi (GSTP) we address the potential for S-glutathionylation to be mediated enzymatically. The data demonstrate the impact of S-glutathionylation in cellular homeostasis, particularly in relation to energy regulation and is of significant interest for those wishing to examine S-glutathionylation in an animal model.


Assuntos
Glutationa Transferase/metabolismo , Glutationa/metabolismo , Fígado/metabolismo , Proteínas Mitocondriais/metabolismo , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo , Animais , Glutationa/genética , Glutationa Transferase/genética , Camundongos , Camundongos Knockout , Proteínas Mitocondriais/genética , Proteoma/genética
11.
Zhonghua Nan Ke Xue ; 18(5): 425-7, 2012 May.
Artigo em Zh | MEDLINE | ID: mdl-22741441

RESUMO

OBJECTIVE: To investigate the relationship of verumontanum hypertrophy with chronic prostatitis. METHODS: Fifty-two patients with chronic prostatitis underwent cystourethroscopy for comparing the size of the verumontanum before and after treatment. RESULTS: Before treatment, all the patients showed different degrees verumontanum hypertrophy, of whom 50 were treated by conventional drug therapy, and the other 2 with voiding dysfunction by drug therapy combined with transurethral resection. Cystourethroscopy revealed significantly decreased size of the verumontanum in 44 of the patients after treatment (P < 0.05). CONCLUSION: Patients with chronic prostatitis often have verumontanum hypertrophy, which could be an indicator of the effect of treatment.


Assuntos
Genitália Masculina/patologia , Prostatite/patologia , Adulto , Doença Crônica , Humanos , Hipertrofia , Masculino , Pessoa de Meia-Idade , Prostatite/etiologia , Adulto Jovem
12.
NPJ Sci Food ; 6(1): 18, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35277514

RESUMO

Active biodegradable packaging are being developed from biodegradable biopolymers which may solve the environmental problems caused by petroleum-based materials (plastics), as well as improving the shelf life, quality, nutritional profile, and safety of packaged food. The functional performance of active ingredients in biodegradable packaging can be extended by controlling their release profiles. This can be achieved by incorporating active ingredients in sandwich-structured packaging including multilayer and composite packaging. In multilayer materials, the release profile can be controlled by altering the type, structure, and thickness of the different layers. In composite materials, the release profile can be manipulated by altering the interactions of active ingredients with the surrounding biopolymer matrix. This article reviews the preparation, properties, and applications of multilayer and composite packaging for controlling the release of active ingredients. Besides, the basic theory of controlled release is also elaborated, including diffusion, swelling, and biodegradation. Mathematical models are presented to describe and predict the controlled release of active ingredients from thin films, which may help researchers design packaging materials with improved functional performance.

13.
Food Res Int ; 161: 111832, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36192964

RESUMO

The use of petroleum-based food packaging materials is causing environmental damage and increasing greenhouse gas production. Consequently, there is a great interest in developing smart and sustainable alternative materials. In this study, an agricultural waste product (purple corncob extract, PCCE) was used as a raw material to prepare environmentally friendly pH-sensitive packaging materials. Natural pH-sensitive pigments (anthocyanins) and lignin-containing cellulose nanocrystals (LCNC) were extracted from the purple corncobs. A cationic biopolymer (chitosan) was used as a scaffolding material to assemble the film matrix. Composite film (LCNC-PCCE-chitosan) was produced using a simple solvent casting method. Fourier transform infrared spectroscopy and scanning electron microscopy analyses showed that the PCCE and LCNC were well dispersed within the chitosan matrix and they interacted with the matrix through hydrogen bonding and electrostatic interactions. The addition of LCNC improved the hydrophobicity and mechanical properties of the film and imparted antioxidant activity and UV-blocking properties. The presence of anthocyanins in the PCCE endowed the film with a sensitive and reversible pH response, which could be well used to monitor changes in the freshness of pork and shrimp products.


Assuntos
Quitosana , Gases de Efeito Estufa , Petróleo , Antocianinas/química , Antioxidantes/química , Celulose/química , Quitosana/química , Concentração de Íons de Hidrogênio , Lignina , Carne , Extratos Vegetais/química , Solventes , Resíduos , Zea mays
14.
Int J Biol Macromol ; 222(Pt A): 509-520, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36122777

RESUMO

Proteins and polysaccharides have been frequently used in recent years to prepare environment-friendly packaging materials. However, films based on proteins or polysaccharides alone often have poor performance as packaging, so they need to be combined to improve properties. In this work, we applied enzyme technology to prepare sodium caseinate (SC)-carboxymethyl chitosan (CMC) films, incorporating epigallocatechin gallate (EGCG) as bridging molecules and antibacterial agents. SC-EGCG-CMC ternary conjugate was firstly synthesized by tyrosinase (Tyr), and the composite films were then prepared with the aid of glycerol. Under tyrosinase catalytic conditions, EGCG could cross-link with SC and CMC covalently. The effects of different concentrations of EGCG and tyrosinase on mechanical properties, water vapor permeability, antibacterial properties and free radical scavenging ability were studied. The crosslinking degree and mechanical properties were improved with the increase of EGCG and tyrosinase content. The film showed good antibacterial activity against Gram-positive bacteria. In addition, the antibacterial activity and free radical scavenging ability increased with the increase of EGCG concentration. This work provides an efficient enzymatic method to prepare films with good strength and antibacterial properties, which can be used to improve the storage quality of foods.


Assuntos
Quitosana , Quitosana/química , Antioxidantes/farmacologia , Antioxidantes/química , Caseínas , Embalagem de Alimentos/métodos , Monofenol Mono-Oxigenase , Antibacterianos/farmacologia , Antibacterianos/química , Permeabilidade , Radicais Livres
15.
Nat Commun ; 13(1): 2564, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35538121

RESUMO

The recent emergence of highly transmissible SARS-CoV-2 variants illustrates the urgent need to better understand the molecular details of the virus binding to its host cell and to develop anti-viral strategies. While many studies focused on the role of the angiotensin-converting enzyme 2 receptor in the infection, others suggest the important role of cell attachment factors such as glycans. Here, we use atomic force microscopy to study these early binding events with the focus on the role of sialic acids (SA). We show that SARS-CoV-2 binds specifically to 9-O-acetylated-SA with a moderate affinity, supporting its role as an attachment factor during virus landing to cell host surfaces. For therapeutic purposes and based on this finding, we have designed novel blocking molecules with various topologies and carrying a controlled number of SA residues, enhancing affinity through a multivalent effect. Inhibition assays show that the AcSA-derived glycoclusters are potent inhibitors of cell binding and infectivity, offering new perspectives in the treatment of SARS-CoV-2 infection.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Sítios de Ligação , Humanos , Ácido N-Acetilneuramínico , Ligação Proteica , Ácidos Siálicos/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo
16.
Chem Commun (Camb) ; 57(4): 492-495, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33326542

RESUMO

In this study, novel copillar[4+1]arenes were used as central heteromultivalent scaffolds via orthogonal couplings with a series of biologically relevant molecules such as carbohydrates, α-amino acids, biotin and phenylboronic acid. Further modifications by introducing maleimides or cyclooctyne groups provided molecular probes adapted to copper-free click chemistry. An octa-azidated fluorescent rotaxane bearing two distinct ligands was also generated in a fully controlled manner.


Assuntos
Compostos Macrocíclicos/química , Sondas Moleculares/química , Rotaxanos/química , Compostos Macrocíclicos/síntese química , Sondas Moleculares/síntese química , Estrutura Molecular , Rotaxanos/síntese química
17.
J Am Soc Mass Spectrom ; 32(9): 2410-2416, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34320809

RESUMO

Cross-linking mass spectrometry methods have not been successfully applied to protein-protein interaction discovery at a proteome-wide level mainly due to the computation complexity (O (n2)) issue. In a previous report, we proposed a decision tree searching strategy (DTSS), which can reduce complexity by orders of magnitude. In this study, we further found that the monolinked peptides carry out the information on the retention time of the corresponding cross-linked pairs; therefore, the retention time of cross-linked peptide pairs can be predicted accurately. By utilizing the retention time as an extra filter, the false positive rate can be reduced by around 86% with a sensitivity loss of 10%. The method combined with DTSS (T-DTSS) not only benefits improving identification confidence but also leads to lower cutoff scores and facilitates substantially increasing inter-cross-link identification. T-DTSS was successfully applied to the identification of inter-cross-links obtained from Escherichia coli cell lysate cross-linked by a newly synthesized enrichable cross-linker, pDSBE. The approach can be applicable to both cleavable and noncleavable methods.


Assuntos
Reagentes de Ligações Cruzadas/química , Bases de Dados de Proteínas , Espectrometria de Massas/métodos , Peptídeos , Árvores de Decisões , Escherichia coli/química , Escherichia coli/metabolismo , Organofosfonatos/química , Peptídeos/análise , Peptídeos/química , Mapas de Interação de Proteínas , Proteômica
18.
Adv Sci (Weinh) ; 8(6): 2003091, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33747727

RESUMO

Using T-cell chimeric antigen receptors (CAR-T) to activate and redirect T cells to tumors expressing the cognate antigen represents a powerful approach in cancer therapy. However, normal tissues with low expression of tumor-associated antigens (TAAs) can be mistargeted, resulting in severe side effects. An approach using a collection of T cells expressing a diverse, 106-member combinatorial cellular library of CARs, in which members can be specifically enriched based on avidity for cell membrane antigens, is reported. Using CD38 as the target antigen, an efficient and effective selection of CARs specifically recognizing CD38+ tumor cells is demonstrated. These selected CAR-T's produce cytokines known to be associated with T cell activation in a CD38 expression-dependent manner. This avidity-based selection endows the engineered T cells with minimal off-tumor effects, while retaining robust antitumor efficacy both in vitro and in vivo. The described method may facilitate the application of CAR-T therapy to TAAs previously considered undruggable.

19.
Front Chem ; 9: 659764, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34368076

RESUMO

COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is still an emergent pandemic for humans. The virus infection is achieved by penetrating its spike protein to host cells via binding with ACE2. Moreover, recent studies show that SARS-CoV-2 may have multiple receptors that need to be further revealed. SARS-CoV-2 shares similar sequences of the spike protein with the Middle East Respiratory Syndrome Coronavirus (MERS-CoV), which can invade host cells by binding to either DPP4 or sialic acids. Sialic acids can be linked to the terminal of glycoproteins and gangliosides are used as one of the receptors of many types of viruses. Therefore, it is very interesting to determine whether sialic acid is a potential receptor of SARS-CoV-2. To address this question, we took N-Acetylneuraminic acid (Neu5Ac), a type of predominant sialic acid found in human cells, as the molecular probe to computationally search the surface of the spike protein to locate the potential binding sites of Neu5Ac. SPR analysis and mass spectrum analysis confirmed the interaction between Neu5Ac and spike protein. This study shows that sialic acids can moderately interact with the spike protein of SARS-CoV-2 by binding between the two RBDs of the spike protein, indicating it could be a potential secondary or auxiliary receptor of SARS-CoV-2.

20.
Nat Commun ; 11(1): 4541, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917884

RESUMO

Study of the interactions established between the viral glycoproteins and their host receptors is of critical importance for a better understanding of virus entry into cells. The novel coronavirus SARS-CoV-2 entry into host cells is mediated by its spike glycoprotein (S-glycoprotein), and the angiotensin-converting enzyme 2 (ACE2) has been identified as a cellular receptor. Here, we use atomic force microscopy to investigate the mechanisms by which the S-glycoprotein binds to the ACE2 receptor. We demonstrate, both on model surfaces and on living cells, that the receptor binding domain (RBD) serves as the binding interface within the S-glycoprotein with the ACE2 receptor and extract the kinetic and thermodynamic properties of this binding pocket. Altogether, these results provide a picture of the established interaction on living cells. Finally, we test several binding inhibitor peptides targeting the virus early attachment stages, offering new perspectives in the treatment of the SARS-CoV-2 infection.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/virologia , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/virologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Ligação Viral , Internalização do Vírus , Células A549 , Enzima de Conversão de Angiotensina 2 , Betacoronavirus/metabolismo , Sítios de Ligação , COVID-19 , Infecções por Coronavirus/metabolismo , Humanos , Modelos Moleculares , Pandemias , Peptidil Dipeptidase A/química , Pneumonia Viral/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Receptores Virais/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA