Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 623(7985): 48-57, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37880362

RESUMO

Photonic computing enables faster and more energy-efficient processing of vision data1-5. However, experimental superiority of deployable systems remains a challenge because of complicated optical nonlinearities, considerable power consumption of analog-to-digital converters (ADCs) for downstream digital processing and vulnerability to noises and system errors1,6-8. Here we propose an all-analog chip combining electronic and light computing (ACCEL). It has a systemic energy efficiency of 74.8 peta-operations per second per watt and a computing speed of 4.6 peta-operations per second (more than 99% implemented by optics), corresponding to more than three and one order of magnitude higher than state-of-the-art computing processors, respectively. After applying diffractive optical computing as an optical encoder for feature extraction, the light-induced photocurrents are directly used for further calculation in an integrated analog computing chip without the requirement of analog-to-digital converters, leading to a low computing latency of 72 ns for each frame. With joint optimizations of optoelectronic computing and adaptive training, ACCEL achieves competitive classification accuracies of 85.5%, 82.0% and 92.6%, respectively, for Fashion-MNIST, 3-class ImageNet classification and time-lapse video recognition task experimentally, while showing superior system robustness in low-light conditions (0.14 fJ µm-2 each frame). ACCEL can be used across a broad range of applications such as wearable devices, autonomous driving and industrial inspections.

2.
Mem Cognit ; 52(2): 312-333, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37782444

RESUMO

Elucidating the interaction between lexical processing and word learning is essential for a complete understanding of the underlying mechanisms of each of them. Long-term priming for words reflects an interplay between lexical processing and word learning. Although robust long-term priming effects have been found between two occurrences of the same word and between semantically similar words, it remains unclear whether long-term priming between orthographically similar words (i.e., long-term form priming) is a reliable effect. Following the theoretical analysis based on the connectionist framework, we articulated the possibility that long-term form priming might be modulated by the phonological congruency between the prime and target words, and that if this modulator was under control, reliable effects of long-term form priming would emerge. However, this hypothesis has not been adequately tested empirically. The present study tested this hypothesis by using Chinese phonograms and the phonetic radicals embedded in them as the prime and target items. In three experiments that varied in the types of stimuli and testing tasks, we consistently found that when the prime and target had the same phonology, naming the prime facilitated later processing of the target, while when they had different phonologies, the priming effect was inhibitory. These observations were consistent with the connectionist account of long-term priming for words. Our findings help confirm the reliability, generalizability, and robustness of long-term form priming and elucidate its underlying mechanisms, and suggesting promising future directions on the interactions between lexical processing and word learning.


Assuntos
Fonética , Aprendizagem Verbal , Humanos , Reprodutibilidade dos Testes
3.
J Adolesc ; 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38946211

RESUMO

OBJECTIVE: Overweight and obesity among adolescents are grave public health issues around the world. Although the conditions that contribute to obesity have been extensively researched, little is known about how multiple conditions interact to cause overweight and obesity. The current study intends to investigate the histomorphic configuration pathways of several conditions of adolescent overweight and obesity by gender. METHOD: The data came from a social survey conducted in June 2021 in Changchun, Jilin Province, China. The sample collected was 14-year-old adolescents, including 167 boys and 137 girls. The school physicians examined the participants' weight and height, and questionnaires were used to collect risk indicators from adolescents, such as sleep duration, electronic screens times, consumption of sugary drinks and fried foods, and physical activity. Simultaneously, a Fuzzy Qualitative Comparative Analysis will be performed to investigate the combinations of diverse conditions. RESULT: We found that there is no determining necessary condition that, once present, directly determines that an individual is in a state of overweight and obesity. Simultaneously, this study revealed nine alternative configurational paths of overweight and obesity in teenagers of different genders, with a concordance of 0.805 for six male groupings and 0.916 for three female groupings. The outcomes of overweight obesity in adolescents under different genders are similar but not identical. CONCLUSION: This study examined the interactions of a number of conditions from the individual, behavioral, learning and living environment that led to the same overweight obese outcome among adolescents of different genders. Our research will be useful to policymakers in that interventions should take into account the combined effects of a number of different aspects rather than focusing on a single factor that causes overweight and obesity.

4.
Nano Lett ; 23(8): 3516-3523, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37043775

RESUMO

The impact of nanoplastics (NPs) on human health is still not well understood, and more research is needed to better understand the risks associated with these particles. In this study, we found that oral administration of polyethylene (PE) NPs in a mice model significantly disrupted the intestinal microenvironment, which shapes adaptive immune response and favors the established in situ colorectal tumor growth. Using single-cell RNA sequencing technology, we show that NPs triggered colon IL-1ß-producing macrophages by inducing lysosome damage, leading to colonic Treg and Th17 differentiation associated with T cell exhaustion, which creates a colon environment that favors the tumor initiation and progress. A similar effect is also observed in polystyrene NPs. Our result provides insight into the potential link between NPs ingestion and colon tumorigenesis, and the urgency of addressing plastic pollution worldwide.


Assuntos
Colo , Microplásticos , Humanos , Animais , Camundongos , Intestinos , Imunidade Adaptativa , Macrófagos , Poliestirenos
5.
J Prosthet Dent ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806340

RESUMO

STATEMENT OF PROBLEM: Different factors influence alterations in facial bone thickness and esthetic outcomes after implant placement. Whether the timing of implant placement influences alterations in the bone dimensional and esthetic outcomes is unclear. PURPOSE: The purpose of this retrospective clinical study was to assess the influence of the timing of implant placement on alveolar bone alterations and esthetic outcome. MATERIAL AND METHODS: Data were collected from 40 patients who had received guided bone regeneration (GBR) performed simultaneously with immediate, early, or delayed single-tooth implant placement in the anterior maxilla. Facial and palatal horizontal bone thicknesses (FHBT, PHBT) and vertical bone level (FVBL, PVBL) immediately after surgery (T0), at 6 months after implant placement (T1), and at 1 to 3 years follow-up (T2) were measured, and the changes calculated. The pink esthetic score (PES) and white esthetic score (WES) were evaluated at the 1- to 3-year follow-up. The Kruskal-Wallis followed by the Dunn t test was applied to evaluate bone alteration among groups, and the Bonferroni method was used for adjusting multiple comparisons. The 1-way ANOVA test was used to determine any significance in the esthetic outcome in the 3 groups (α=.05). RESULTS: The reduction in the FHBT0 of the immediate, early, and delayed implant placement group (T2-T0) was -1.17 (-1.70, -0.61) mm, -1.53 (-1.69, -0.49) mm, and -1.47 (-2.30, -0.20) mm, respectively. The FHBT around the implant apices remained basically stable. No obvious changes in the PHBT around the implants of the immediate and delayed implant placement group were noted. The FVBL significantly decreased in each group during the follow-up period (-1.34 (01.88, -0.56) mm, immediate; -2.88 (-3.79, -1.07) mm, early; -1.26 (-2.52, -0.48) mm, delayed). The PVBL change in the early implant placement group (-2.18 (-3.26, -0.86) mm) was more significant than that in the immediate (-0.55 (-2.10, -0.17) mm) and delayed (-0.51 (-1.29, 0.02) mm) implantation groups (P =.013). The mean ±standard deviation PES/WES score of the immediate (15.6 ±1.84) and early (15.00 ±1.13) implant placement groups was higher than that of the delayed implant placement group (13.92 ±2.10) without significant difference. CONCLUSIONS: Similar bone changes and esthetic outcomes were found around implants of the immediate, early, and delayed implant placement groups.

6.
J Appl Mech ; 91(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38449742

RESUMO

Natural protective materials offer unparalleled solutions for impact-resistant material designs that are simultaneously lightweight, strong, and tough. Particularly, the Bouligand structure found in the dactyl club of mantis shrimp and the staggered structure in nacre achieve excellent mechanical strength, toughness, and impact resistance. Previous studies have shown that hybrid designs by combining different bioinspired microstructures can lead to enhanced mechanical strength and energy dissipation. Nevertheless, it remains unknown whether combining Bouligand and staggered structures in nanofibrillar cellulose (NFC) films, forming a discontinuous fibrous Bouligand (DFB) architecture, can achieve enhanced impact resistance against projectile penetration. Additionally, the failure mechanisms under such dynamic loading conditions have been minimally understood. In our study, we systematically investigate the dynamic failure mechanisms and quantify the impact resistance of NFC thin films with DFB architecture by leveraging previously developed coarse-grained models and ballistic impact molecular dynamics simulations. We find that when nanofibrils achieve a critical length and form DFB architecture, the impact resistance of NFC films outperforms the counterpart films with continuous fibrils by comparing their specific ballistic limit velocities and penetration energies. We also find that the underlying mechanisms contributing to this improvement include enhanced fibril sliding, intralayer and interlayer crack bridging, and crack twisting in the thickness direction enabled by the DFB architecture. Our results show that by combining Bouligand and staggered structures in NFC films, their potential for protective applications can be further improved. Our findings can provide practical guidelines for the design of protective films made of nanofibrils.

7.
Biochem Biophys Res Commun ; 663: 147-153, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37121125

RESUMO

Clathrin-mediated endocytosis (CME) is imperative for physiological processes in eukaryotic cells. In fungi, the Pan1/End3/Sla1 complex controls the transition between early and late stages of CME. Although it is acknowledged that End3 uses its N-terminal to interact with the C-terminal of Sla1, detailed mechanism remains obscure. Magnaporthe oryzae, the pathogenic fungus of rice, cause blast disease that threatens rice production worldwide. Here we report the detailed interaction mechanism between End3 and Sla1 of M. oryzae, i.e. MoEnd3 and MoSla1. The two EH domains of MoEnd3 (MoEnd3-EH1 and MoEnd3-EH2) is different both in evolution and calcium binding, but are indispensable for conformational stability of each other, an unreported effect of tandem-arranged EH domains. MoEnd3-EH1 and MoEnd3-EH2 interact with peptide MoSla11145-1155 containing a NPF motif with a conserved mode, and MoEnd3-EHs (containing both EH1 and EH2 domains) binds MoSla11145-1155 with a higher affinity, supporting the synergetic effect of EH domains. In addition, MoEnd3-EHs also recognize peptide MoSla1971-981 with a new MPF motif that has not been reported before, while Sla1 of yeast contains a DPF motif that bears EH domain interaction ability. Collectively, our research shows that the two EH domains of End3 synergize to interact with dual XPF motifs of Sla1, which conforms to a bivalent receptor-bivalent ligand model to improve both affinity and specificity.


Assuntos
Peptídeos , Saccharomyces cerevisiae , Ligação Proteica , Saccharomyces cerevisiae/metabolismo , Peptídeos/metabolismo , Endocitose/fisiologia
8.
Bioorg Med Chem Lett ; 79: 129069, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36395995

RESUMO

In the present study, a series of cycloalkyl[b]thiophenylnicotinamide derivatives against α-glucosidase were synthesized, and evaluated for their in vitro and in vivo anti-diabetic potential. Most of the synthetic analogues exhibited superior α-glucosidase inhibitory effects than the standard drug acarbose (IC50 = 258.5 µM), in which compound 11b with cyclohexyl[b]thiophene core demonstrated the highest activity with an IC50 value of 9.9 µM and showed higher selectivity towards α-glucosidase over α-amylase by 7.4-fold. Fluorescence quenching experiment confirmed the direct binding of 11b with α-glucosidase, kinetics study revealed that 11b was a mixed-type inhibitor, and its binding mode was analyzed using molecular docking. Moreover, analogs compounds 6a-9b, 11b, 12b did not show in vitro cytotoxicity against LO2 and HepG2 cells. Finally, compound 11b exhibited in vivo hypoglycemic activity by reducing the blood glucose levels in sucrose-loaded rats.


Assuntos
Inibidores de Glicosídeo Hidrolases , alfa-Glucosidases , Animais , Ratos , Inibidores de Glicosídeo Hidrolases/farmacologia , Simulação de Acoplamento Molecular , Hipoglicemiantes/farmacologia , Acarbose
9.
BMC Neurol ; 23(1): 291, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37542260

RESUMO

BACKGROUND: Rehabilitation improves functional recovery in subarachnoid hemorrhage (SAH) patients, and assessing patients for rehabilitation is the first step in this process. However, little is known about clinical practice in China regarding the assessment and provision of rehabilitation for patients with SAH. METHODS: To identify patients hospitalized with SAH and to analyze rehabilitation assessment rates, we used data for 11,234 SAH patients admitted to 861 hospitals from the China Stroke Center Alliance from August 2015 to July 2019. We examined factors for rehabilitation assessment and analyzed the relationship between rehabilitation assessment and outcomes in these patients. RESULTS: Among 11,234 patients with SAH, 6,513 (58.0%) were assessed for rehabilitation. Assessed patients had an increased length of stay (mean ± SD days: 17.3 ± 12.5 versus 11.6 ± 10.5, P = 49.4), a higher Glasgow Coma Scale (GCS) score on admission (mean ± SD GCS score: 12.3 ± 3.8 versus 11.8 ± 4.4, P = 12.2), and were more likely to be admitted to the stroke unit (19.6% versus 13.8%, P = 15.6). In multivariable analysis, factors associated with an increased likelihood of a rehabilitation assessment (p < 0.05) included a longer length of stay (odds ratio [OR], 1.04; 95% confidence interval (CI), 1.04 to 1.05) and care such as dysphagia screening (OR, 1.88; 95% CI, 1.73 to 2.04), DVT prophylaxis (OR, 1.56; 95% CI, 1.41 to 1.72) and vessel evaluation (OR, 1.80; 95% CI, 1.63 to 1.98). For the multivariate analysis of outcomes, patients undergoing rehabilitation assessment had a longer length of stay (OR, 1.96; 95% CI, 1.81 to 2.12), a higher modified Rankin Scale (mRS) score at discharge (OR, 1.49; 95% CI, 1.36 to 1.64), and higher rates of discharge to a rehabilitation center (OR, 3.23; 95% CI, 1.81-5.75). CONCLUSION: More than two-fifths of SAH patients were not assessed for rehabilitation. Rates vary considerably among hospital grades, and there is a need to improve adherence to recommended care for SAH patients.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Hemorragia Subaracnóidea , Humanos , População do Leste Asiático , Hospitalização , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/complicações , Hemorragia Subaracnóidea/complicações , Resultado do Tratamento
10.
Environ Sci Technol ; 57(46): 18104-18115, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37615359

RESUMO

Quantifying a person's cumulative exposure burden to per- and polyfluoroalkyl substances (PFAS) mixtures is important for risk assessment, biomonitoring, and reporting of results to participants. However, different people may be exposed to different sets of PFASs due to heterogeneity in the exposure sources and patterns. Applying a single measurement model for the entire population (e.g., by summing concentrations of all PFAS analytes) assumes that each PFAS analyte is equally informative to PFAS exposure burden for all individuals. This assumption may not hold if PFAS exposure sources systematically differ within the population. However, the sociodemographic, dietary, and behavioral characteristics that underlie systematic exposure differences may not be known, or may be due to a combination of these factors. Therefore, we used mixture item response theory, an unsupervised psychometrics and data science method, to develop a customized PFAS exposure burden scoring algorithm. This scoring algorithm ensures that PFAS burden scores can be equitably compared across population subgroups. We applied our methods to PFAS biomonitoring data from the United States National Health and Nutrition Examination Survey (2013-2018). Using mixture item response theory, we found that participants with higher household incomes had higher PFAS burden scores. Asian Americans had significantly higher PFAS burden compared with non-Hispanic Whites and other race/ethnicity groups. However, some disparities were masked when using summed PFAS concentrations as the exposure metric. This work demonstrates that our summary PFAS burden metric, accounting for sources of exposure variation, may be a more fair and informative estimate of PFAS exposure.


Assuntos
Ácidos Alcanossulfônicos , Poluentes Ambientais , Fluorocarbonos , Humanos , Estados Unidos , Inquéritos Nutricionais , Saúde Ambiental
11.
BMC Health Serv Res ; 23(1): 1212, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932737

RESUMO

BACKGROUND: As a global pandemic, The Corona Virus Disease 2019 (COVID-19) has brought significant challenges to the primary health care (PHC) system. Health professionals are constantly affected by the pandemic's harmful impact on their mental health and are at significant risk of job burnout. Therefore, it is essential to gain a comprehensive understanding of how their burnout was affected. The study aimed to examine the relationship between COVID-19 event strength and job burnout among PHC providers and to explore the single mediating effect of job stress and work engagement and the chain mediating effect of these two variables on this relationship. METHODS: Multilevel stratified convenience sampling method was used to recruit 1148 primary medical staff from 48 PHC institutions in Jilin Province, China. All participants completed questionnaires regarding sociodemographic characteristics, COVID-19 event strength, job stress, work engagement, and job burnout. The chain mediation model was analyzed using SPSS PROCESS 3.5 Macro Model 6. RESULTS: COVID-19 event strength not only positively predicted job burnout, but also indirectly influenced job burnout through the mediation of job stress and work engagement, thereby influencing job burnout through the "job stress → work engagement" chain. CONCLUSIONS: This study extends the application of event systems theory and enriches the literature about how the COVID-19 pandemic impacted PHC medical staff job burnout. The findings derived from our study have critical implications for current and future emergency response and public policy in the long-term COVID-19 disease management period.


Assuntos
Esgotamento Profissional , COVID-19 , Estresse Ocupacional , Humanos , Pandemias , Satisfação no Emprego , Esgotamento Profissional/psicologia , Estresse Ocupacional/psicologia , Corpo Clínico , Inquéritos e Questionários
12.
Nano Lett ; 22(13): 5434-5442, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35766590

RESUMO

Narrow-band-gap organic semiconductors have emerged as appealing near-infrared (NIR) sensing materials by virtue of their unique optoelectronic properties. However, their limited carrier mobility impedes the implementation of large-area, dynamic NIR sensor arrays. In this work, high-performance inorganic-organic hybrid phototransistor arrays are achieved for NIR sensing, by taking advantage of the high electron mobility of In2O3 and the strong NIR absorption of a BTPV-4F:PTB7-Th bulk heterojunction (BHJ) with an enhanced photogating effect. As a result, the hybrid phototransistors reach a high responsivity of 1393.0 A W-1, a high specific detectivity of 4.8 × 1012 jones, and a fast response of 0.72 ms to NIR light (900 nm). Meanwhile, an integrated 16 × 16 phototransistor array with a one-transistor-one-phototransistor (1T1PT) architecture is achieved. On the basis of the enhanced photogating effect, the phototransistor array can not only achieve real-time, dynamic NIR light mapping but also implement image preprocessing, which is promising for advanced NIR image sensors.

13.
J Environ Manage ; 345: 118771, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37591100

RESUMO

Saline-alkali soils constitute a globally important carbon pool that plays a critical role in soil carbon dioxide (CO2) and methane (CH4) fluxes. However, the relative importance of microorganisms in the regulation of CH4 emissions under elevated salinity remains unclear. Here, we report the composition of CH4 production and oxidation microbial communities under five different salinity levels in the Yellow River Delta, China. This study also obtained the gene number of microbial CH4 metabolism via testing the soil metagenomes, and further investigated the key soil factors to determine the regulation mechanism. Spearman correlation analysis showed that the soil electrical conductivity, salt content, and Na+, and SO42- concentrations showed significantly negative correlations with the CO2 and CH4 emission rates, while the NO2--N concentration and NO2-/NO3- ratio showed significantly positive correlations with the CO2 and CH4 emission rates. Metabolic pathway analysis showed that the mcrA gene for CH4 production was highest in low-salinity soils. By contrast, the relative abundances of the fwdA, ftr, mch, and mer genes related to the CO2 pathway increased significantly with rising salinity. Regarding CH4 oxidation processes, the relative abundances of the pmoA, mmoB, and mdh1 genes transferred from CH4 to formaldehyde decreased significantly from the control to the extreme-salinity plot. The greater abundance and rapid increase of methanotrophic bacteria compared with the lower abundance and slow increase in methanogenic archaea communities in saline-alkali soils may have increased CH4 oxidation and reduced CH4 production in this study. Only CO2 emissions positively affected CH4 emissions from low- to medium-salinity soils, while the diversities of CH4 production and oxidation jointly influenced CH4 emissions from medium- to extreme-salinity plots. Hence, future investigations will also explore more metabolic pathways for CH4 emissions from different types of saline-alkali lands and combine the key soil enzymes and regulated biotic or abiotic factors to enrich the CH4 metabolism pathway in saline-alkali soils.


Assuntos
Álcalis , Solo , Dióxido de Carbono/análise , Metagenômica , Dióxido de Nitrogênio/análise , Metano/análise , Microbiologia do Solo
14.
Small ; 18(45): e2203611, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36156393

RESUMO

Brain-inspired neuromorphic computing hardware based on artificial synapses offers efficient solutions to perform computational tasks. However, the nonlinearity and asymmetry of synaptic weight updates in reported artificial synapses have impeded achieving high accuracy in neural networks. Here, this work develops a synaptic memtransistor based on polarization switching in a two-dimensional (2D) ferroelectric semiconductor (FES) of α-In2 Se3 for neuromorphic computing. The α-In2 Se3 memtransistor exhibits outstanding synaptic characteristics, including near-ideal linearity and symmetry and a large number of programmable conductance states, by taking the advantages of both memtransistor configuration and electrically configurable polarization states in the FES channel. As a result, the α-In2 Se3 memtransistor-type synapse reaches high accuracy of 97.76% for digit patterns recognition task in simulated artificial neural networks. This work opens new opportunities for using multiterminal FES memtransistors in advanced neuromorphic electronics.


Assuntos
Eletrônica , Semicondutores , Redes Neurais de Computação , Sinapses
15.
New Phytol ; 235(2): 674-689, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35451076

RESUMO

Alternative splicing (AS) and alternative polyadenylation (APA) contribute significantly to the regulation of gene expression in higher eukaryotes. Their biological impact in filamentous fungi, however, is largely unknown. Here we combine PacBio Isoform-Sequencing and strand-specific RNA-sequencing of multiple tissues and mutant characterization to reveal the landscape and regulation of AS and APA in Fusarium graminearum. We generated a transcript annotation comprising 51 617 isoforms from 17 189 genes. In total, 4997 and 11 133 genes are alternatively spliced and polyadenylated, respectively. Majority of the AS events alter coding sequences. Unexpectedly, the AS transcripts containing premature-termination codons are not sensitive to nonsense-mediated messenger RNA decay. Unlike in yeasts and animals, distal APA sites have strong signals, but proximal APA isoforms are highly expressed in F. graminearum. The 3'-end processing factors FgRNA15, FgHRP1, and FgFIP1 play roles in promoting proximal APA site usage and intron splicing. A genome-wide increase in intron inclusion and distal APA site usage and downregulation of the spliceosomal and 3'-end processing factors were observed in older and quiescent tissues, indicating intron inclusion and 3'-untranslated region lengthening as novel mechanisms in regulating aging and dormancy in fungi. This study provides new insights into the complexity and regulation of AS and APA in filamentous fungi.


Assuntos
Processamento Alternativo , Poliadenilação , Regiões 3' não Traduzidas/genética , Processamento Alternativo/genética , Animais , Fungos/genética , Poliadenilação/genética , Isoformas de Proteínas/genética
16.
J Biochem Mol Toxicol ; 36(7): e23048, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35307914

RESUMO

Recent studies show that lncRNAs participate in drug resistance and nonsmall cell lung cancer (NSCLC) progression. This study aimed to study the roles and mechanisms of long intergenic nonprotein coding RNA 01140 (LINC01140) in regulating NSCLC progression and drug resistance. Real-time quantitative polymerase chain reaction and western blot analysis were used to detect LINC01140, miR-4742-5p, and transforming acidic coiled-coil 1 (TACC1) expression in NSCLC cells. The interaction between two molecules was examined by luciferase reporter and/or RNA immunoprecipitation assays. Cell invasion, apoptosis, and cisplatin cytotoxicity were assessed by transwell invasion assay, flow cytometry analysis, and CCK-8 assay, respectively. LINC01140 was downregulated and miR-4742-5p was upregulated in NSCLC. LINC01140 inhibited miR-4742-5p expression by competitively binding to miR-4742-5p, while miR-4742-5p targeted TACC1 to inhibit TACC1 expression in NSCLC cells. LINC01140 enrichment repressed the invasive potential and cisplatin resistance and triggered apoptosis, which was reversed by miR-4742-5p overexpression. miR-4742-5p inhibition suppressed cell invasion and cisplatin resistance and accelerated apoptosis in NSCLC cells, while TACC1 silencing abolished these effects. Mechanistically, LINC01140 positively regulated TACC1 expression by sponging miR-4742-5p. In conclusion, LINC01140 inhibited NSCLC progression and cisplatin resistance via functioning as a ceRNA for miR-4742-5p to modulate TACC1.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Proteínas Associadas aos Microtúbulos , Proteínas Nucleares , RNA Longo não Codificante , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Proliferação de Células , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Proteínas Fetais/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , MicroRNAs/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Nucleares/genética , RNA Longo não Codificante/genética
17.
Cell Mol Biol Lett ; 27(1): 2, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34979914

RESUMO

Sestrins (Sesns), highly conserved stress-inducible metabolic proteins, are known to protect organisms against various noxious stimuli including DNA damage, oxidative stress, starvation, endoplasmic reticulum (ER) stress, and hypoxia. Sesns regulate metabolism mainly through activation of the key energy sensor AMP-dependent protein kinase (AMPK) and inhibition of mammalian target of rapamycin complex 1 (mTORC1). Sesns also play pivotal roles in autophagy activation and apoptosis inhibition in normal cells, while conversely promoting apoptosis in cancer cells. The functions of Sesns in diseases such as metabolic disorders, neurodegenerative diseases, cardiovascular diseases, and cancer have been broadly investigated in the past decades. However, there is a limited number of reviews that have summarized the functions of Sesns in the pathophysiological processes of human diseases, especially musculoskeletal system diseases. One aim of this review is to discuss the biological functions of Sesns in the pathophysiological process and phenotype of diseases. More significantly, we include some new evidence about the musculoskeletal system. Another purpose is to explore whether Sesns could be potential biomarkers or targets in the future diagnostic and therapeutic process.


Assuntos
Proteínas Nucleares , Sestrinas , Autofagia , Proteínas de Choque Térmico/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Estresse Oxidativo/fisiologia , Transdução de Sinais/fisiologia
18.
Sensors (Basel) ; 22(13)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35808548

RESUMO

Accurate segmentation of nasopharyngeal carcinoma is essential to its treatment effect. However, there are several challenges in existing deep learning-based segmentation methods. First, the acquisition of labeled data are challenging. Second, the nasopharyngeal carcinoma is similar to the surrounding tissues. Third, the shape of nasopharyngeal carcinoma is complex. These challenges make the segmentation of nasopharyngeal carcinoma difficult. This paper proposes a novel semi-supervised method named CAFS for automatic segmentation of nasopharyngeal carcinoma. CAFS addresses the above challenges through three mechanisms: the teacher-student cooperative segmentation mechanism, the attention mechanism, and the feedback mechanism. CAFS can use only a small amount of labeled nasopharyngeal carcinoma data to segment the cancer region accurately. The average DSC value of CAFS is 0.8723 on the nasopharyngeal carcinoma segmentation task. Moreover, CAFS has outperformed the state-of-the-art nasopharyngeal carcinoma segmentation methods in the comparison experiment. Among the compared state-of-the-art methods, CAFS achieved the highest values of DSC, Jaccard, and precision. In particular, the DSC value of CAFS is 7.42% higher than the highest DSC value in the state-of-the-art methods.


Assuntos
Fenômenos Biológicos , Neoplasias Nasofaríngeas , Humanos , Processamento de Imagem Assistida por Computador/métodos , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/diagnóstico por imagem
19.
New Phytol ; 230(2): 757-773, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33411336

RESUMO

Ascospores generated during sexual reproduction are the primary inoculum for the wheat scab fungus Fusarium graminearum. Purine metabolism is known to play important roles in fungal pathogens but its lifecycle stage-specific regulation is unclear. By characterizing the genes involved in purine de novo and salvage biosynthesis pathways, we showed that de novo syntheses of inosine, adenosine and guanosine monophosphates (IMP, AMP and GMP) are important for vegetative growth, sexual/asexual reproduction, and infectious growth, whereas purine salvage synthesis is dispensable for these stages in F. graminearum. Addition of GMP rescued the defects of the Fgimd1 mutant in vegetative growth and conidiation but not sexual reproduction, whereas addition of AMP rescued all of these defects of the Fgade12 mutant, suggesting that the function of de novo synthesis of GMP rather than AMP is distinct in sexual stages. Moreover, Acd1, an ortholog of AMP deaminase, is dispensable for growth but essential for ascosporogenesis and pathogenesis, suggesting that AMP catabolism has stage-specific functions during sexual reproduction and infectious growth. The expression of almost all the genes involved in de novo purine synthesis is downregulated during sexual reproduction and infectious growth relative to vegetative growth. This study revealed that F. graminearum has stage-specific regulation of purine metabolism during infectious growth and sexual reproduction.


Assuntos
Fusarium , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusarium/metabolismo , Regulação Fúngica da Expressão Gênica , Doenças das Plantas , Purinas , Reprodução , Esporos Fúngicos/metabolismo
20.
Opt Express ; 29(24): 40161-40176, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34809363

RESUMO

In this paper, a self-adaptable anti-interference scheme in a hybrid wireless fidelity (WiFi) and visible light communication (VLC) network is firstly proposed by light-path blocking. By human behavior characteristics, a user-device position relationship model is constructed to determine users' orientations. By the model, a strategy of choosing access points (AP) is present. By the strategy, communicating APs can be self-adaptively selected to match them with users' orientations. In the scheme, interference signals can be effectively blocked through the user's body to ensure normal communication. Finally,the effectiveness of the scheme has been demonstrated with simulations. Also, the scheme has its comparative advantages of not only saving energy, increasing SINR and lifting the availability of the hybrid WiFi-VLC network but also having faster response speed of network, higher efficiency of user access, easier implementation and lower cost.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA