Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(1): 105553, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072060

RESUMO

Proteins can spontaneously tie a variety of intricate topological knots through twisting and threading of the polypeptide chains. Recently developed artificial intelligence algorithms have predicted several new classes of topological knotted proteins, but the predictions remain to be authenticated experimentally. Here, we showed by X-ray crystallography and solution-state NMR spectroscopy that Q9PR55, an 89-residue protein from Ureaplasma urealyticum, possesses a novel 71 knotted topology that is accurately predicted by AlphaFold 2, except for the flexible N terminus. Q9PR55 is monomeric in solution, making it the smallest and most complex knotted protein known to date. In addition to its exceptional chemical stability against urea-induced unfolding, Q9PR55 is remarkably robust to resist the mechanical unfolding-coupled proteolysis by a bacterial proteasome, ClpXP. Our results suggest that the mechanical resistance against pulling-induced unfolding is determined by the complexity of the knotted topology rather than the size of the molecule.


Assuntos
Inteligência Artificial , Proteínas de Bactérias , Dobramento de Proteína , Ureaplasma urealyticum , Modelos Moleculares , Peptídeos , Proteínas de Bactérias/química , Estrutura Terciária de Proteína
2.
Int J Environ Health Res ; 34(1): 587-599, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36599011

RESUMO

Studies have showed that LIPA seems to be favorably associated with mortality in the general population and illness individuals, but the association between different cardiovascular health status and mortality is not clear. After adjustment , the HRs of LIPA in individuals with CVRF and CVD from quartiles 2-4 were less than 1, which were 0.78 (95%CI, 0.61 ~ 0.99; P = 0.042), 0.63 (95%CI, 0.47 ~ 0.83; P = 0.001), 0.55(95%CI, 0.40 ~ 0.76; P < 0.001), and 0.52 (95%CI, 0.37 ~ 0.74; P < 0.001),0.39 (95%CI, 0.27 ~ 0.58; P < 0.001), 0.33 (95%CI, 0.22 ~ 0.51; P < 0.001) LIPA is beneficial for reducing mortality, but the shape of the association depends on cardiovascular health status.


Assuntos
Doenças Cardiovasculares , Humanos , Estudos de Coortes , Doenças Cardiovasculares/epidemiologia , Fatores de Risco , Exercício Físico , Nível de Saúde
3.
Fish Shellfish Immunol ; 132: 108504, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36563974

RESUMO

The extract from Theobroma cacao L, pod husk served as the immunostimulant to enhance the immunity and resistance against Lactococcus garvieae of Macrobrachium rosenbergii. In this study, we employed the injection method and dietary administration method to determine the effect of cocoa pod husk (CPH) on M. rosenbergii. The non-specific immune parameters and disease resistance were evaluated after the prawn injected with 1 µg prawn-1 CPH extract (C1), 3 µg prawn-1 CPH extract (C3), and 5 µg prawn-1 CPH extract (C5) for 1, 3, and 7 days. The results showed a significant increase of total haemocyte count (THC), differential haemocyte count (DHC), phenoloxidase (PO) activity, respiratory bursts (RBs), and phagocytic activity and clearance efficiency to L. garvieae. The non-specific immune parameters, physiological parameters, and disease resistance and growth performance were evaluated after the prawn fed with 1 g kg-1 CPH extract diet (CD1), 3 g kg-1 CPH extract diet (CD3) and 5 g kg-1 CPH extract diet (CD5). The results showed a significant increase in all immune parameters and showed a significant decrease in physiological parameters. No significant difference was observed in growth performance of prawn fed with the CPH containing diet. Both injection and dietary method showed a significant increase in disease resistance against to L. garvieae. We therefore recommend that CPH extract can be used as a immunostimulant for prawn by dietary administration to regulate immune responses, and carbohydrate metabolism lead to enhance resistance against pathogen.


Assuntos
Cacau , Palaemonidae , Animais , Resistência à Doença , Extratos Vegetais/farmacologia , Adjuvantes Imunológicos/farmacologia
4.
IUBMB Life ; 74(8): 794-811, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35229461

RESUMO

TAR DNA-binding protein 43 (TDP-43) is an RNA/DNA-binding protein involved in RNA regulation and diseases. In 2006, TDP-43 inclusions were found in the disease lesions of several neurodegenerative diseases. It is the pathological hallmark in both amyotrophic lateral sclerosis and frontotemporal lobar dementia. It also presents in a large portion of patients with Alzheimer's disease. TDP-43 is prone to aggregate; however, the role of TDP-43 oligomers remains poorly understood in both physiological and pathological conditions. In this review, we emphasize the role of oligomeric TDP-43 in both physiological and pathological conditions and discuss the potential mechanisms of oligomer formation. Finally, we suggest therapeutic strategies against the TDP-43 oligomers in neurodegenerative diseases.


Assuntos
Esclerose Lateral Amiotrófica , Proteínas de Ligação a DNA , Doenças Neurodegenerativas , Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Ligação a DNA/genética , Humanos , Doenças Neurodegenerativas/patologia , Proteínas de Ligação a RNA/genética
5.
IUBMB Life ; 74(8): 739-747, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34724333

RESUMO

Alzheimer's disease (AD) is the most prevalent and devastating neurodegenerative disease occurred in the elderly. One of the pathogenic hallmarks is senile plaques composed of amyloid-ß (Aß) fibrils. Single mutations resided in Aß were found in familial AD (FAD) patients that have early onset of the disease. The molecular details and properties of each FAD Aß variants are still elusive. Here, we employed collective spectroscopic techniques to examine the properties of various Aß40 fibrils. We generated fibrils of wild type (WT) and three FAD mutants on residue E22 including E22G, E22K, and E22Q. We monitored fibril formation by thioflavin T (ThT) assay, examined secondary structure by Fourier transform infrared and far-UV circular dichroism spectroscopy, imaged fibril morphology by transmission electron microscopy, and evaluated ThT-binding kinetics. In the thermal experiments, we found E22K fibrils resisted to high temperature and retained significant ß-sheet content than the others. E22K fibril seeds after high-temperature treatment still possess the seeding property, whereas WT fibril seeds are disturbed after the treatment. Therefore, in this study we demonstrated the mutation at E22K increases the thermal stability and seeding function of amyloid fibrils.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Idoso , Humanos , Doença de Alzheimer/genética , Amiloide/química , Amiloide/genética , Peptídeos beta-Amiloides/genética , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética
6.
Ecotoxicol Environ Saf ; 248: 114301, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36410143

RESUMO

Acetylcholinesterase (AChE) is an essential neurotransmitter hydrolase in nervous systems of animals and its number varies among species. So far, five AChEs have been identified in the natural enemy Pardosa pseudoannulata. Here we found that Ppace1, Ppace2 and Ppace5 were highly expressed in the spider brain, among which the mRNA level of Ppace5, but not Ppace1 and Ppace2, could be up-regulated by organophosphorus insecticides at their sublethal concentrations. In spider brain, the treatment by organophosphorus insecticides at the sublethal concentrations could increase total AChE activity, although high concentrations inhibited the activity. The activity that increased from the sublethal concentration pretreatment could compensate for the activity inhibition due to subsequent application of organophosphorus insecticides at lethal concentrations, and consequently reduce the mortality of spiders. PpAChE1 and PpAChE2 were highly sensitive to organophosphorus insecticides, and their activities would be strongly inhibited by the insecticides. In contrast, PpAChE5 displayed relative insensitivity towards organophosphorus insecticides, but with the highest catalytic efficiency for ACh. That meant the up-regulation of Ppace5 under insecticide exposure was important for maintaining AChE activity in spider brain, when PpAChE1 and PpAChE2 were inhibited by organophosphorus insecticides. The study demonstrated that multiple AChEs in the spider brain worked collaboratively, with part members for maintaining AChE activity and other members responding to organophosphorus inhibition, to provide protection from organophosphorus insecticides. In fields, high concentration insecticides are often applied when ineffective controls of insect pests occur due to relative-low concentration of insecticides in last round application. This application pattern of organophosphorus insecticides provides more chances for P. pseudoannulata to survive and controlling insect pests as a natural enemy.


Assuntos
Inseticidas , Aranhas , Animais , Acetilcolinesterase/genética , Inseticidas/toxicidade , Compostos Organofosforados/toxicidade , Encéfalo , Dor
7.
Anal Chem ; 93(49): 16320-16329, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34817990

RESUMO

Alzheimer's disease (AD) has become highly relevant in aging societies, yet the fundamental molecular basis for AD is still poorly understood. New tools to study the undergoing structural conformation changes of amyloid beta (Aß) peptides, the pathogenic hallmark of AD, could play a crucial role in the understanding of the underlying mechanisms of misfolding and cytotoxicity of this peptide. It has been recently reported that Zn2+ interacts with Aß and changes its aggregation pathway away from less harmful fibrillar forms to more toxic species. Here, we present a versatile platform based on a set of sub-10 nm nanogap electrodes for the manipulation and sensing of biomolecules in the physiological condition at a low copy number, where molecules are trapped via dielectrophoresis (DEP) across the nanogap, which also serves as a surface-enhanced Raman spectroscopy hotspot. In this study, we demonstrate that our electrode nanogap platform can be used to study the structural difference between Aß40 and ZnAß40 peptides at different aggregation stages in the physiologically relevant concentration and in solution phase. The Raman spectroscopic signatures of the DEP-captured neuropeptides prove the device to be attractive as a label-free bioanalytical tool.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Eletrodos , Humanos , Análise Espectral Raman , Zinco
8.
Brief Bioinform ; 20(3): 976-984, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-29194477

RESUMO

The development of disease involves a systematic disturbance inside cells and is associated with changes in the interactions or regulations among genes forming biological networks. The bridges inside a network are critical in shortening the distances between nodes. We observed that, inside the human gene regulatory network, one strongly connected core bridged the whole network. Other regulations outside the core formed a weakly connected component surrounding the core like a peripheral structure. Furthermore, the regulatory feedback loops (FBLs) inside the core compose an interface-like structure between the core and periphery. We then denoted the regulatory FBLs as the interface core. Notably, both the cancer-associated and essential biomolecules and regulations were significantly overrepresented in the interface core. These results implied that the interface core is not only critical for the network structure but central in cellular systems. Furthermore, the enrichment of the cancer-associated and essential regulations in the interface core might be attributed to its bridgeness in the network. More importantly, we identified one regulatory FBL between HNF4A and NR2F2 that possesses the highest bridgeness in the interface core. Further investigation suggested that the disturbance of the HNF4A-NR2F2 FBL might protect tumor cells from apoptotic processes. Our results emphasize the relevance of the regulatory network properties to cellular systems and might reveal a critical role of the interface core in cancer.


Assuntos
Carcinogênese/genética , Redes Reguladoras de Genes , Humanos , Neoplasias/genética
9.
Langmuir ; 37(1): 516-523, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33352048

RESUMO

The onset or progression of numerous neurodegenerative diseases occurs due to aggregation of proteins that ultimately form fibrils. The assembly and morphology of fibrils are susceptible to environmental factors. In this work, we used atomic force microscopy (AFM) to investigate the effects of dissolved nitrogen and oxygen molecules on the morphology of fibrils formed by a hydrophobic amyloid peptide implicated in amyotrophic lateral sclerosis, 15 repeats of glycine-alanine, on a highly oriented pyrolytic graphite substrate. We started with preformed fibril solutions that were then diluted with buffers of different gas conditions, resulting in the aggregation of the fibrils into different morphologies that were revealed by AFM after adsorption on the substrate. Straight fibrils were observed in both degassed and ambient buffers, but a stronger lateral association was seen in degassed buffers. Smaller and softer fibrils were observed in O2-supersaturated buffers, and plaque-like fibril aggregates of considerably large size were evident in N2-supersaturated buffers. In overnight incubation experiments, we observed changes in both the morphology and height of the fibril aggregates, and their evolution varied with different gas conditions. These findings indicate that the gas type and concentration affect the aggregation of amyloid fibrils and may facilitate the development of biomaterial applications and treatments for amyloid-related diseases.

10.
Brain ; 143(2): 430-440, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32040555

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal and incurable neurodegenerative disease caused by motor neuron loss, resulting in muscle wasting, paralysis and eventual death. A key pathological feature of ALS is cytoplasmically mislocalized and aggregated TDP-43 protein in >95% of cases, which is considered to have prion-like properties. Historical studies have predominantly focused on genetic forms of ALS, which represent ∼10% of cases, leaving the remaining 90% of sporadic ALS relatively understudied. Additionally, the role of astrocytes in ALS and their relationship with TDP-43 pathology is also not currently well understood. We have therefore used highly enriched human induced pluripotent stem cell (iPSC)-derived motor neurons and astrocytes to model early cell type-specific features of sporadic ALS. We first demonstrate seeded aggregation of TDP-43 by exposing human iPSC-derived motor neurons to serially passaged sporadic ALS post-mortem tissue (spALS) extracts. Next, we show that human iPSC-derived motor neurons are more vulnerable to TDP-43 aggregation and toxicity compared with their astrocyte counterparts. We demonstrate that these TDP-43 aggregates can more readily propagate from motor neurons into astrocytes in co-culture paradigms. We next found that astrocytes are neuroprotective to seeded aggregation within motor neurons by reducing (mislocalized) cytoplasmic TDP-43, TDP-43 aggregation and cell toxicity. Furthermore, we detected TDP-43 oligomers in these spALS spinal cord extracts, and as such demonstrated that highly purified recombinant TDP-43 oligomers can reproduce this observed cell-type specific toxicity, providing further support to a protein oligomer-mediated toxicity hypothesis in ALS. In summary, we have developed a human, clinically relevant, and cell-type specific modelling platform that recapitulates key aspects of sporadic ALS and uncovers both an initial neuroprotective role for astrocytes and the cell type-specific toxic effect of TDP-43 oligomers.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Astrócitos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios Motores/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Morte Celular/genética , Citoplasma/metabolismo , Humanos , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Medula Espinal/metabolismo , Medula Espinal/patologia
11.
Int J Mol Sci ; 22(21)2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34769266

RESUMO

Sublethal dosages of imidacloprid cause long-term destructive effects on honey bees at the individual and colony levels. In this review, the molecular effects of sublethal imidacloprid were integrated and reported. Several general effects have been observed among different reports using different approaches. Quantitative PCR approaches revealed that imidacloprid treatments during the adult stage are expressed as changes in immuneresponse, detoxification, and oxidation-reduction response in both workers and queens. In addition, transcriptomic approaches suggested that phototransduction, behavior, and somatic muscle development also were affected. Although worker larvae show a higher tolerance to imidacloprid than adults, molecular evidence reveals its potential impacts. Sublethal imidacloprid treatment during the larval stage causes gene expression changes in larvae, pupae, and adults. Transcriptome profiles suggest that the population and functions of affected differentially expressed genes, DEGs, vary among different worker ages. Furthermore, an early transcriptomic switch from nurse bees to foragers was observed, suggesting that precocious foraging activity may occur. This report comprehensively describes the molecular effects of sublethal dosages of imidacloprid on the honey bee Apis mellifera. The corresponding molecular pathways for physiological and neurological responses in imidacloprid-exposed honey bees were validated. Transcriptomic evidence suggests a global and sustained sublethal impact of imidacloprid on honey bee development.


Assuntos
Abelhas/metabolismo , Neonicotinoides/farmacologia , Nitrocompostos/farmacologia , Transcriptoma/efeitos dos fármacos , Animais , Larva/metabolismo
12.
Int J Mol Sci ; 22(20)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34681803

RESUMO

A neuropeptide (Sco-CHH-L), belonging to the crustacean hyperglycemic hormone (CHH) superfamily and preferentially expressed in the pericardial organs (POs) of the mud crab Scylla olivacea, was functionally and structurally studied. Its expression levels were significantly higher than the alternative splice form (Sco-CHH) in the POs, and increased significantly after the animals were subjected to a hypo-osmotic stress. Sco-CHH-L, but not Sco-CHH, significantly stimulated in vitro the Na+, K+-ATPase activity in the posterior (6th) gills. Furthermore, the solution structure of Sco-CHH-L was resolved using nuclear magnetic resonance spectroscopy, revealing that it has an N-terminal tail, three α-helices (α2, Gly9-Asn28; α3, His34-Gly38; and α5, Glu62-Arg72), and a π-helix (π4, Cys43-Tyr54), and is structurally constrained by a pattern of disulfide bonds (Cys7-Cys43, Cys23-Cys39, and Cys26-Cys52), which is characteristic of the CHH superfamily-peptides. Sco-CHH-L is topologically most similar to the molt-inhibiting hormone from the Kuruma prawn Marsupenaeus japonicus with a backbone root-mean-square-deviation of 3.12 Å. Ten residues of Sco-CHH-L were chosen for alanine-substitution, and the resulting mutants were functionally tested using the gill Na+, K+-ATPase activity assay, showing that the functionally important residues (I2, F3, E45, D69, I71, and G73) are located at either end of the sequence, which are sterically close to each other and presumably constitute the receptor binding sites. Sco-CHH-L was compared with other members of the superfamily, revealing a folding pattern, which is suggested to be common for the crustacean members of the superfamily, with the properties of the residues constituting the presumed receptor binding sites being the major factors dictating the ligand-receptor binding specificity.


Assuntos
Proteínas de Artrópodes , Braquiúros , Hormônios de Invertebrado , Proteínas do Tecido Nervoso , Neuropeptídeos , Receptores de Peptídeos/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Braquiúros/genética , Braquiúros/metabolismo , Hormônios de Invertebrado/química , Hormônios de Invertebrado/genética , Hormônios de Invertebrado/metabolismo , Modelos Moleculares , Família Multigênica , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuropeptídeos/química , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Pericárdio/metabolismo , Ligação Proteica , Domínios Proteicos , Relação Estrutura-Atividade
13.
BMC Bioinformatics ; 21(1): 433, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33008305

RESUMO

BACKGROUND: Precise disease module is conducive to understanding the molecular mechanism of disease causation and identifying drug targets. However, due to the fragmentization of disease module in incomplete human interactome, how to determine connectivity pattern and detect a complete neighbourhood of disease based on this is still an open question. RESULTS: In this paper, we perform exploratory analysis leading to an important observation that through a few intermediate nodes, most separate connected components formed by disease-associated proteins can be effectively connected and eventually form a complete disease module. And based on the topological properties of these intermediate nodes, we propose a connect separate connected components (C3) method to detect a succinct disease module by introducing a relatively small number of intermediate nodes, which allows us to obtain more pure disease module than other methods. Then we apply C3 across a large corpus of diseases to validate this connectivity pattern of disease module. Furthermore, the connectivity of the perturbed genes in multi-omics data such as The Cancer Genome Atlas also fits this pattern. CONCLUSIONS: C3 tool is not only useful in detecting a clearly-defined connected disease neighbourhood of 299 diseases and cancer with multi-omics data, but also helpful in better understanding the interconnection of phenotypically related genes in different omics data and studying complex pathological processes.


Assuntos
Algoritmos , Doença , Asma/genética , Neoplasias da Mama/genética , Feminino , Ontologia Genética , Humanos , Anotação de Sequência Molecular , Mapas de Interação de Proteínas , Proteínas/metabolismo
14.
Biochem Biophys Res Commun ; 529(3): 714-719, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32736697

RESUMO

Obesity is associated with metabolic disorders. Fibroblast growth factor 21 (FGF21) has been recognized as important in metabolism. Glucosamine (GLN) has been demonstrated to perform diverse beneficial functions. This study aimed to reveal whether and how GLN would modulate FGF21 production in relation to metabolism. With in vivo model of normal diet (ND) and high-fat diet (HFD) mice receiving GLN injection and in vitro model of mouse AML12 liver cells and differentiated 3T3L1 adipocytes challenged with GLN, GLN appeared to improve the glucose metabolism in HFD and ND mice and to elevate FGF21 protein expression in HFD liver and to increase both FGF21 protein and mRNA levels in WAT from HFD and ND mice and it also upregulated FGF21 expression in both AML12 and differentiated 3T3L1 cells. By using inhibitors against various signaling pathways, p38, Akt, NF-κB, and PKA appeared potentially involved in GLN-mediated FGF21 production in AML12 cells; GLN was able to mediate activation of NF-κB, p38 or PKA/CREB signaling. Our accumulated findings suggest that GLN may potentially improve the metabolic performance by inducing FGF21 production in liver and adipose tissues and such induction in liver cells may act in part due to GLN induction of the NF-κB, p38 and PKA pathways.


Assuntos
Tecido Adiposo/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Glucosamina/metabolismo , Fígado/metabolismo , Células 3T3-L1 , Animais , Fatores de Crescimento de Fibroblastos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regulação para Cima
15.
J Hum Genet ; 65(7): 619-625, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32246049

RESUMO

The Fabry disease-causing mutation, the GLA IVS4+919G>A (designated GLA IVS4), is very prevalent in patients with hypertrophic cardiomyopathy in Taiwan. This X-linked mutation has also been found in patients in Kyushu, Japan and Southeast Asia. To investigate the age and the possible ancestral origin of this mutation, a total of 33 male patients with the GLA IVS4+919G>A mutation, born in Taiwan, Japan, Singapore, Malaysia, Vietnam, and the Fujian and Guangdong provinces of China, were studied. Peripheral bloods were collected, and the Ilumina Infinium CoreExome-24 microarray was used for dense genotyping. A mutation-carrying haplotype was discovered which was shared by all 33 patients. This haplotype does not exist in 15 healthy persons without the mutation. Rather, a wide diversity of haplotypes was found in the vicinity of the mutation site, supporting the existence of a single founder of the GLA IVS4 mutation. The age of the founder mutation was estimated by the lengths of the mutation-carrying haplotypes based on the linkage-disequilibrium decay theory. The first, second, and third quartile of the age estimates are 800.7, 922.6, and 1068.4 years, respectively. We concluded that the GLA IVS4+919G>A mutation originated from a single mutational event that occurred in a Chinese chromosome more than 800 years ago.


Assuntos
Cardiomiopatia Hipertrófica Familiar/genética , Doença de Fabry/genética , alfa-Galactosidase/genética , Adulto , Cardiomiopatia Hipertrófica Familiar/epidemiologia , Cardiomiopatia Hipertrófica Familiar/patologia , China/epidemiologia , Doença de Fabry/epidemiologia , Doença de Fabry/patologia , Genes Ligados ao Cromossomo X/genética , Genótipo , Haplótipos/genética , Humanos , Japão/epidemiologia , Malásia/epidemiologia , Masculino , Pessoa de Meia-Idade , Mutação/genética , Taiwan/epidemiologia
16.
Hepatology ; 70(4): 1409-1423, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31004519

RESUMO

Nuclear translocation of mothers against decapentaplegic homolog 2/3 (SMAD2/3), core transcription factors of transforming growth factor ß (TGF-ß) signaling, is critical for hepatic stellate cell (HSC) differentiation into metastasis-promoting myofibroblasts. SMAD2/3 have multiple coactivators, including WW domain-containing transcription regulator protein 1 (WWTR1 or TAZ) and p300 acetyltransferase. In the nucleus, TAZ binds to SMAD2/3 to prevent SMAD2/3 nuclear export. However, how TAZ and SMAD2/3 enter the nucleus remains poorly understood because neither contains a nuclear localization signal (NLS), an amino acid sequence tagging proteins for nuclear transport. p300 is an NLS-containing large scaffold protein, so we hypothesized that SMAD2/3 and TAZ may undergo nuclear import through complexing with p300. Coimmunoprecipitation, immunofluorescence, and nuclear fractionation assays revealed that TGF-ß1 promoted binding of SMAD2/3 and TAZ to p300 and that p300 inactivation disrupted TGF-ß1-mediated SMAD2/3 and TAZ nuclear accumulation. Deleting the p300 NLS blocked TGF-ß1-induced SMAD2/3 and TAZ nuclear transport. Consistently, p300 inactivation suppressed TGF-ß1-mediated HSC activation and transcription of genes encoding tumor-promoting factors, such as connective tissue growth factor, Tenascin C, Periostin, platelet-derived growth factor C, and fibroblast growth factor 2, as revealed by microarray analysis. Chromatin immunoprecipitation-real-time quantitative PCR showed that canonical p300-mediated acetylation of histones also facilitated transcription in response to TGF-ß1 stimulation. Interestingly, although both TGF-ß1-mediated and stiffness-mediated HSC activation require p300, comparison of gene expression data sets revealed that transcriptional targets of TGF-ß1 were distinct from those of stiffness-p300 mechanosignaling. Lastly, in tumor/HSC coinjection and intrasplenic tumor injection models, targeting p300 of activated-HSC/myofibroblasts by C646, short hairpin RNA, or cre-mediated gene disruption reduced tumor and liver metastatic growth in mice. Conclusion: p300 facilitates TGF-ß1-stimulated HSC activation by both noncanonical (cytoplasm-to-nucleus shuttle for SMAD2/3 and TAZ) and canonical (histone acetylation) mechanisms. p300 is an attractive target for inhibiting HSC activation and the prometastatic liver microenvironment.


Assuntos
Transporte Ativo do Núcleo Celular/genética , Células Estreladas do Fígado/metabolismo , Neoplasias Hepáticas/genética , Proteína Smad2/genética , Fatores de Transcrição de p300-CBP/genética , Aciltransferases , Proteínas Adaptadoras de Transdução de Sinal , Animais , Sítios de Ligação , Western Blotting , Diferenciação Celular/genética , Humanos , Neoplasias Hepáticas/patologia , Camundongos , Miofibroblastos/citologia , Miofibroblastos/metabolismo , RNA Interferente Pequeno/genética , Transdução de Sinais/genética , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta/farmacologia
17.
Mycoses ; 63(11): 1215-1225, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32783251

RESUMO

BACKGROUND: Current available treatment modes against dermatophytoses are often tedious and sometimes unsatisfactory. As an emerging and promising approach, antimicrobial photodynamic therapy (aPDT) attracts much attention in the treatment of superficial or localised infections. OBJECTIVES: This work investigated the photodynamic efficacy and effects of haematoporphyrin monomethyl ether (HMME) on microconidia of Trichophyton rubrum in vitro. METHODS: The photodynamic killing efficacy of HMME on microconidia of two T rubrum strains was assessed by MTT assay. The effects of HMME-mediated aPDT on the growth of T rubrum and cellular structure of microconidia were also investigated. Confocal laser scanning microscopy (CLSM) and flow cytometry were employed to study the intracellular localisation of HMME and generation of reactive oxygen species (ROS). RESULTS: HMME showed no obvious toxicity in the dark, but after light irradiation it inactivated the T rubrum microconidia in a light energy dose-dependent manner, and inhibited the growth of T rubrum. CLSM demonstrated that HMME initially bound to the cell envelop and entered into the cell after light irradiation. HMME-mediated aPDT also damaged the cell cytoplasm and increased the accumulation of intracellular ROS, resulting in cell death. CONCLUSIONS: The results suggested that HMME-mediated aPDT had potential to be used in the treatment of superficial infections caused by T rubrum.

18.
J Virol ; 92(23)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30209166

RESUMO

The baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is a large double-stranded DNA (dsDNA) virus that encodes approximately 156 genes and is highly pathogenic to a variety of larval lepidopteran insects in nature. Oral infection of larval midgut cells is initiated by the occlusion-derived virus (ODV), while secondary infection of other tissues is mediated by the budded virus (BV). Global viral gene expression has been studied in detail in BV-infected cell cultures, but studies of ODV infection in the larval midgut are limited. In this study, we examined expression of the ∼156 AcMNPV genes in Trichoplusia ni midgut tissue using a transcriptomic approach. We analyzed expression profiles of viral genes in the midgut and compared them with profiles from a T. ni cell line (Tnms42). Several viral genes (p6.9, orf76, orf75, pp31, Ac-bro, odv-e25, and odv-ec27) had high expression levels in the midgut throughout the infection. Also, the expression of genes associated with occlusion bodies (polh and p10) appeared to be delayed in the midgut in comparison with the cell line. Comparisons of viral gene expression profiles revealed remarkable similarities between the midgut and cell line for most genes, although substantial differences were observed for some viral genes. These included genes associated with high level BV production (fp-25k), acceleration of systemic infection (v-fgf), and enhancement of viral movement (arif-1/orf20). These differential expression patterns appear to represent specific adaptations for virus infection and transmission through the polarized cells of the lepidopteran midgut.IMPORTANCE Baculoviruses such as AcMNPV are pathogens that are natural regulators of certain insect populations. Baculovirus infections are biphasic, with a primary phase initiated by oral infection of midgut epithelial cells by occlusion-derived virus (ODV) virions and a secondary phase in which other tissues are infected by budded-virus (BV) virions. While AcMNPV infections in cultured cells have been studied extensively, comparatively little is known regarding primary infection in the midgut. In these studies, we identified gene expression patterns associated with ODV-mediated infection of the midgut in Trichoplusia ni and compared those results with prior results from BV-infected cultured cells, which simulate secondary infection. These studies provide a detailed analysis of viral gene expression patterns in the midgut, which likely represent specific viral strategies to (i) overcome or avoid host defenses in the gut and (ii) rapidly move infection from the midgut, into the hemocoel to facilitate systemic infection.


Assuntos
Sistema Digestório/metabolismo , Perfilação da Expressão Gênica , Larva/genética , Nucleopoliedrovírus/genética , RNA Viral/genética , Spodoptera/genética , Proteínas Virais/genética , Animais , Sistema Digestório/virologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Larva/metabolismo , Larva/virologia , Nucleopoliedrovírus/metabolismo , Spodoptera/metabolismo , Spodoptera/virologia , Proteínas Virais/metabolismo
19.
J Med Virol ; 91(10): 1811-1817, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31209906

RESUMO

BACKGROUND: The safety and necessity of hepatitis B immunoglobulin (HBIG) in preventing the mother-to-child transmission of hepatitis B virus (HBV) are still controversial because of its unclear mechanism of action and the inconsistent injection programs used during gestation. OBJECTIVES: This study aimed to show the dynamic transportation and distribution of HBIG in the maternal body and to provide evidence for its clinical efficacy in preventing mother-to-child HBV transmission. STUDY DESIGN: Pregnant mice were injected with Cy7-labeled mouse anti-human monoclonal hepatitis B surface antibodies through the tail vein. In vivo imaging technology was used to observe the dynamic transportation and distribution of HBIG in the pregnant mice. RESULTS: HBIG fluorescence signals were higher in the uterus than in the liver, spleen, and kidneys. Fluorescence signals in the uterine region were obviously higher at the third trimester than at early and mid pregnancy. CONCLUSIONS: HBIG is gradually deposited in the mouse placenta during pregnancy, with the phenomenon being more significant in the third trimester.


Assuntos
Anticorpos Monoclonais , Antígenos de Superfície da Hepatite B/imunologia , Imunoglobulinas , Animais , Carbocianinas , Feminino , Troca Materno-Fetal , Camundongos , Camundongos Endogâmicos C57BL , Imagem Óptica , Gravidez
20.
Mol Carcinog ; 57(7): 866-877, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29566277

RESUMO

Luteolin (3',4',5,7-tetrahydroxyflavone), which exists in fruits, vegetables, and medicinal herbs, is used in Chinese traditional medicine for treating various diseases, such as hypertension, inflammatory disorders, and cancer. However, the gene-regulatory role of luteolin in cancer prevention and therapy has not been clarified. Herein, we demonstrated that treatment with luteolin resulted in a significant decrease in the viability of human leukemia cells. In the present study, by evaluating fragmentation of DNA and poly (ADP-ribose) polymerase (PARP), we found that luteolin was able to induce PARP cleavage and nuclear fragmentation as well as an increase in the sub-G0 /G1 fraction. In addition, luteolin also induced Fas and Fas ligand (FasL) expressions and subsequent activation of caspases-8 and -3, which can trigger the extrinsic apoptosis pathway, while knocking down Fas-associated protein with death domain (FADD) prevented luteolin-induced PARP cleavage. Immunoblot and chromatin immunoprecipitation (ChIP) analyses revealed that luteolin increased acetylation of histone H3, which is involved in the upregulation of Fas and FasL. Moreover, both the extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) pathways are involved in luteolin-induced histone H3 acetylation. Finally, luteolin also activated the c-Jun signaling pathway, which contributes to FasL, but not Fas, gene expression and downregulation of c-Jun expression by small interfering RNA transfection which resulted in a significant decrease in luteolin-induced PARP cleavage. Thus, our results demonstrate that luteolin induced apoptosis of HL-60 cells, and this was associated with c-Jun activation and histone H3 acetylation-mediated Fas/FasL expressions.


Assuntos
Apoptose/efeitos dos fármacos , Proteína Ligante Fas/metabolismo , Histonas/metabolismo , Leucemia/tratamento farmacológico , Luteolina/farmacologia , Proteínas Proto-Oncogênicas c-jun/metabolismo , Receptor fas/metabolismo , Acetilação/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 8/metabolismo , Linhagem Celular Tumoral , Proteína de Domínio de Morte Associada a Fas/metabolismo , Células HL-60 , Humanos , Leucemia/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Células U937 , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA