Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 34(19)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36753757

RESUMO

Perovskites have showed significant potential for the application in photodetectors due to their outstanding electrical and optical properties. Integrating two-dimensional (2D) materials with perovskites can make full use of the high carrier mobility of 2D materials and strong light absorption of perovskite to realize excellent optoelectrical properties. Here, we demonstrate a photodetector based on the WTe2/CsPbI3heterostructure. The quenching and the shortened lifetime of photoluminescence (PL) for CsPbI3perovskite confirms the efficient charge transfer at the WTe2/CsPbI3heterojunction. After coupled with WTe2, the photoresponsivity of the CsPbI3photodetector is improved by almost two orders of magnitude due to the high-gain photogating effect. The WTe2/CsPbI3heterojunction photodetector reveals a large responsivity of 1157 A W-1and a high detectivity of 2.1 × 1013Jones. The results pave the way for the development of high-performance optoelectronic devices based on 2D materials/perovskite heterojunctions.

2.
RSC Adv ; 14(3): 1962-1969, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38196903

RESUMO

Zero-dimensional (0D)-two-dimensional (2D) hybrid photodetectors have received widespread attention due to their outstanding photoelectric performances. However, these devices with high performances mainly employ quantum dots that contain toxic elements as sensitizing layers, which restricts their practical applications. In this work, we used eco-friendly AgInGaS quantum dots (AIGS-QDs) as a highly light-absorbing layer and molybdenum diselenide (MoSe2) as a charge transfer layer to construct a 0D-2D hybrid photodetector. Notably, we observed that MoSe2 strongly quenches the photoluminescence (PL) of AIGS-QDs and decreases the decay time of PL in the MoSe2/AIGS-QDs heterojunction. The MoSe2/AIGS-QDs hybrid photodetector demonstrates a responsivity of 14.3 A W-1 and a high detectivity of 6.4 × 1011 Jones. Moreover, the detectivity of the hybrid phototransistor is significantly enhanced by more than three times compared with that of the MoSe2 photodetector. Our work suggests that 0D-2D hybrid photodetectors with multiplex I-III-VI QDs provide promising potential for future high-sensitivity photodetectors.

3.
J Phys Condens Matter ; 34(15)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35081518

RESUMO

Two-dimensional (2D) van der Waals heterojunction offers alternative facile platforms for many optoelectronic devices due to no-dangling bonds and steep interface carrier gradient. Here, we demonstrate a 2D heterojunction device, which combines the benefits of high carrier mobility of 2D MoTe2and strong light absorption of perovskite, to achieve excellent responsivity. This device architecture is constructed based on the charge carriers separation and transfer with the high-gain photogating effect at the interface of the heterojunction. The device exhibits high responsivity of 334.6 A W-1, impressive detectivity of 6.2 × 1010Jones. All the results provide the insight into the benefits of interfacial carriers transfer for designing hybrid perovskite-2D materials based optoelectronic devices.

4.
Materials (Basel) ; 14(8)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924521

RESUMO

In mesoscopic scale, concrete is regarded as a heterogeneous three-phase material composed of mortar, aggregate and interfacial transition zone (ITZ). The effect of mesoscopic structure on the mechanical behaviors of concrete should be paid more attention. The fractal characteristics of aggregate were calculated, then the geometric models of aggregate were reconstructed by using fractal Brownian motion. Based on the random distribution of aggregates, the concrete mesoscopic structure model was established. And the numerical model was generated by using grid mapping technology. The dynamic compression experiments of concrete under Split Hopkinson Pressure Bar (SHPB) loading verify the reliability and validity of the mesoscopic structural model and the parameters of the constitutive model. Based on these, a numerical study of concrete under dynamic splitting is carried out. By changing the parameters of the constitutive model, the effects of tensile strengths of aggregate, mortar and ITZ on the dynamic tensile strength of concrete are discussed. The results show that the dynamic failure of specimen usually occurs at the interfacial transition zone, then extends to the mortar, and the aggregates rarely fail. However, the increase of strain rate intensifies this process. When the strain rate increases from 72.93 s-1 to 186.51 s-1, a large number of aggregate elements are deleted due to reaching the failure threshold. The variation of tensile strengths of each phase component have the same effect on the dynamic tensile strength and energy of concrete. The dynamic tensile strength and energy of concrete are most affected by the tensile strength of mortar, following by the ITZ, but the tensile strength of aggregate has almost no effect.

5.
Materials (Basel) ; 14(1)2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33379330

RESUMO

Due to the non-uniform tension and compression strength of concrete, carbon fiber can be added to concrete to improve its static tensile behavior and increase the tension-compression ratio. In view of the destructive consequences of impacts and explosions, it is necessary to study the dynamic responses of carbon fiber reinforced concrete (CFRC) structures. Therefore, the effects of the stress rates and carbon fiber contents on the dynamic tension behavior of CFRC were investigated in this paper. The dynamic splitting tests of concrete with the fiber contents of 0, 0.1, 0.2, and 0.3% were carried out by using a split Hopkinson pressure bar (SHPB) device with a diameter of 74 mm. We found that with the increase of fiber content, the static tensile strength of CFRC increases obviously, but the increased amplitude tends to decrease. The dynamic tensile strength and dynamic increase factor (DIF) both increase with the increase of stress rate, but the growth rate slows down, showing an obvious rate effect. The rate sensitivity of ordinary concrete is higher than CFRC. There are significant differences in the influence of carbon fiber on the dynamic and static strength of concrete. In the design of concrete mixing proportion, the content of carbon fiber should be appropriately selected to meet the requirements of dynamic and static mechanical properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA