Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
N Engl J Med ; 387(15): 1361-1372, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36239644

RESUMO

BACKGROUND: Data from trials investigating the effects and risks of endovascular thrombectomy for the treatment of stroke due to basilar-artery occlusion are limited. METHODS: We conducted a multicenter, prospective, randomized, controlled trial of endovascular thrombectomy for basilar-artery occlusion at 36 centers in China. Patients were assigned, in a 2:1 ratio, within 12 hours after the estimated time of basilar-artery occlusion to receive endovascular thrombectomy or best medical care (control). The primary outcome was good functional status, defined as a score of 0 to 3 on the modified Rankin scale (range, 0 [no symptoms] to 6 [death]), at 90 days. Secondary outcomes included a modified Rankin scale score of 0 to 2, distribution across the modified Rankin scale score categories, and quality of life. Safety outcomes included symptomatic intracranial hemorrhage at 24 to 72 hours, 90-day mortality, and procedural complications. RESULTS: Of the 507 patients who underwent screening, 340 were in the intention-to-treat population, with 226 assigned to the thrombectomy group and 114 to the control group. Intravenous thrombolysis was used in 31% of the patients in the thrombectomy group and in 34% of those in the control group. Good functional status at 90 days occurred in 104 patients (46%) in the thrombectomy group and in 26 (23%) in the control group (adjusted rate ratio, 2.06; 95% confidence interval [CI], 1.46 to 2.91, P<0.001). Symptomatic intracranial hemorrhage occurred in 12 patients (5%) in the thrombectomy group and in none in the control group. Results for the secondary clinical and imaging outcomes were generally in the same direction as those for the primary outcome. Mortality at 90 days was 37% in the thrombectomy group and 55% in the control group (adjusted risk ratio, 0.66; 95% CI, 0.52 to 0.82). Procedural complications occurred in 14% of the patients in the thrombectomy group, including one death due to arterial perforation. CONCLUSIONS: In a trial involving Chinese patients with basilar-artery occlusion, approximately one third of whom received intravenous thrombolysis, endovascular thrombectomy within 12 hours after stroke onset led to better functional outcomes at 90 days than best medical care but was associated with procedural complications and intracerebral hemorrhage. (Funded by the Program for Innovative Research Team of the First Affiliated Hospital of USTC and others; ATTENTION ClinicalTrials.gov number, NCT04751708.).


Assuntos
Arteriopatias Oclusivas , Artéria Basilar , Procedimentos Endovasculares , Acidente Vascular Cerebral , Trombectomia , Humanos , Administração Intravenosa , Arteriopatias Oclusivas/complicações , Arteriopatias Oclusivas/tratamento farmacológico , Arteriopatias Oclusivas/mortalidade , Arteriopatias Oclusivas/cirurgia , Artéria Basilar/efeitos dos fármacos , Artéria Basilar/cirurgia , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/etiologia , Isquemia Encefálica/cirurgia , Procedimentos Endovasculares/efeitos adversos , Procedimentos Endovasculares/métodos , Fibrinolíticos/administração & dosagem , Fibrinolíticos/efeitos adversos , Fibrinolíticos/uso terapêutico , Hemorragias Intracranianas/induzido quimicamente , Hemorragias Intracranianas/etiologia , Estudos Prospectivos , Qualidade de Vida , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/mortalidade , Acidente Vascular Cerebral/cirurgia , Trombectomia/efeitos adversos , Trombectomia/métodos , Terapia Trombolítica/efeitos adversos , Terapia Trombolítica/métodos , Resultado do Tratamento , Recuperação de Função Fisiológica
2.
J Am Chem Soc ; 146(14): 10084-10092, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38530325

RESUMO

Glycine is a nonessential amino acid that plays a vital role in various biological activities. However, the conventional synthesis of glycine requires sophisticated procedures or toxic feedstocks. Herein, we report an electrochemical pathway for glycine synthesis via the reductive coupling of oxalic acid and nitrate or nitrogen oxides over atomically dispersed Fe-N-C catalysts. A glycine selectivity of 70.7% is achieved over Fe-N-C-700 at -1.0 V versus RHE. Synergy between the FeN3C structure and pyrrolic nitrogen in Fe-N-C-700 facilitates the reduction of oxalic acid to glyoxylic acid, which is crucial for producing glyoxylic acid oxime and glycine, and the FeN3C structure could reduce the energy barrier of *HOOCCH2NH2 intermediate formation thus accelerating the glyoxylic acid oxime conversion to glycine. This new synthesis approach for value-added chemicals using simple carbon and nitrogen sources could provide sustainable routes for organonitrogen compound production.

3.
Anal Chem ; 96(3): 1178-1184, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38192112

RESUMO

Real-time monitoring of the structural evolution of battery materials is crucial for understanding their underlying reaction mechanisms, which cannot be satisfied by the typically used post-mortem analysis. While more and more operando techniques were constructed and employed, they are all based on ambient working conditions that are not generally the case for real-world applications. Indeed, batteries work in an environment where self-heat dissipation increases the surrounding temperature, and extreme temperature applications (<-20 °C or >60 °C) are also frequently proposed. Operando characterization techniques under variable temperatures are therefore highly desired for tracking battery reactions under real-working conditions. Here, we develop a methodology to operando monitor the electronic and geometrical structures of battery materials over a wide range of temperatures based on X-ray spectroscopies. It is substantiated with data collected on a model LiNi0.90Co0.05Mn0.05O2/Si@C pouch cell under operando quick X-ray absorption fine structure spectroscopy, by which we found a temperature-dependent structure evolution behavior that is highly correlated with the electrochemical performance. Our work establishes an exemplary protocol for analyzing battery materials under temperature-variable environments that can be widely used in other related fields.

4.
Nano Lett ; 23(11): 5307-5316, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37276017

RESUMO

The dissolution of transition metal ions causes the notorious peeling of active substances and attenuates electrochemical capacity. Frustrated by the ceaseless task of pushing a boulder up a mountain, Sisyphus of the Greek myth yearned for a treasure to be unearthed that could bolster his efforts. Inspirationally, by using ferricyanide ions (Fe(CN)63-) in an electrolyte as a driving force and taking advantage of the fast nucleation rate of copper hexacyanoferrate (CuHCF), we successfully reversed the dissolution of Fe and Cu ions that typically occurs during cycling. The capacity retention increased from 5.7% to 99.4% at 0.5 A g-1 after 10,000 cycles, and extreme stability of 99.8% at 1 A g-1 after 40,000 cycles was achieved. Fe(CN)63- enables atom-by-atom substitution during the electrochemical process, enhancing conductivity and reducing volume change. Moreover, we demonstrate that this approach is applicable to various aqueous batteries (i.e., NH4+, Li+, Na+, K+, Mg2+, Ca2+, and Al3+).

5.
Angew Chem Int Ed Engl ; : e202409563, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949085

RESUMO

Regulating the binding effect between the surface of an electrode material and reaction intermediates is essential in highly efficient CO2 electro-reduction to produce high-value multicarbon (C2+) compounds. Theoretical study reveals that lattice tensile strain in single-component Cu catalysts can reduce the dipole-dipole repulsion between *CO intermediates and promotes *OH adsorption, and the high *CO and *OH coverage decreases the energy barrier for C-C coupling. In this work, Cu catalysts with varying lattice tensile strain were fabricated by electro-reducing CuO precursors with different crystallinity, without adding any extra components. The as-prepared single-component Cu catalysts were used for CO2 electro-reduction, and it is discovered that the lattice tensile strain in Cu could enhance the Faradaic efficiency (FE) of C2+ products effectively. Especially, the as-prepared CuTPA catalyst with high lattice tensile strain achieves a FEC2+ of 90.9% at -1.25 V vs. RHE with a partial current density of 486.1 mA cm-2.

6.
Circulation ; 146(1): 6-17, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35656816

RESUMO

BACKGROUND: The authors compare the effectiveness and safety of endovascular treatment (EVT) versus best medical management (BMM) in strokes attributable to acute basilar artery occlusion (BAO). METHODS: The present analysis was based on the ongoing, prospective, multicenter ATTENTION (Endovascular Treatment for Acute Basilar Artery Occlusion) trial registry in China. Our analytic sample comprised 2134 patients recruited at 48 sites between 2017 and 2021 and included 462 patients who received BMM and 1672 patients who received EVT. We performed an inversed probability of treatment weighting analysis. Qualifying patients had to present within 24 hours of estimated BAO. The primary clinical outcome was favorable functional outcome (modified Rankin Scale score, 0-3) at 90 days. We also performed a sensitivity analysis with the propensity score matching-based and the instrumental variable-based analysis. RESULTS: In our primary analysis using the inversed probability of treatment weighting-based analysis, there was a significantly higher rate of favorable outcome at 90 days among EVT patients compared with BMM-treated patients (adjusted relative risk, 1.42 [95% CI, 1.19-1.65]; absolute risk difference, 11.8% [95% CI, 6.9-16.7]). The mortality was significantly lower (adjusted relative risk, 0.78 [95% CI, 0.69-0.88]; absolute risk difference, -10.3% [95% CI, -15.8 to -4.9]) in patients undergoing EVT. Results were generally consistent across the secondary end points. Similar associations were seen in the propensity score matching-based and instrumental variable-based analysis. CONCLUSIONS: In this real-world study, EVT was associated with significantly better functional outcomes and survival at 90 days. Well-designed randomized studies comparing EVT with BMM in the acute BAO are needed. REGISTRATION: URL: www.chictr.org.cn; Unique identifier: ChiCTR2000041117.


Assuntos
Arteriopatias Oclusivas , Procedimentos Endovasculares , Acidente Vascular Cerebral , Arteriopatias Oclusivas/terapia , Artéria Basilar , Procedimentos Endovasculares/efeitos adversos , Procedimentos Endovasculares/métodos , Humanos , Estudos Prospectivos , Sistema de Registros , Trombectomia/métodos , Resultado do Tratamento
7.
J Am Chem Soc ; 145(40): 21983-21990, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37783450

RESUMO

Electrochemical reduction of CO2 to multicarbon (C2+) products using renewable energy sources is an important route to storing sustainable energy and achieving carbon neutrality. It remains a challenge to achieve high C2+ product faraday efficiency (FE) at ampere-level current densities. Herein, we propose the immobilization of an alkaline ionic liquid on copper for promoting the deep reduction of CO2. By this strategy, a C2+ FE of 81.4% can be achieved under a current density of 0.9 A·cm-2 with a half-cell energy conversion efficiency of 47.4% at -0.76 V vs reversible hydrogen electrode (RHE). Particularly, when the current density is as high as 1.8 A·cm-2, the C2+ FE reaches 71.6% at an applied potential of -1.31 V vs RHE. Mechanistic studies demonstrate that the alkaline ionic liquid plays multiple roles of improving the accumulation of CO2 molecules on the copper surface, promoting the activation of the adsorbed CO2, reducing the energy barrier of CO dimerization, stabilizing intermediates, and facilitating the C2+ product formation.

8.
Small ; 19(15): e2207202, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36683197

RESUMO

As an important multiferroic material, pure and low-dimensional phase-stable bismuth ferrite has wide applications. Herein, one-pot hydrothermal method was used to synthesize bismuth ferrite. Almost pure Bi2 Fe4 O9 , BiFeO3 , and their mixture were successfully obtained by controlling the KOH concentration in the hydrothermal solutions. The as-prepared Bi2 Fe4 O9 products were crystalline with Pbam space group, had nanosheet morphology, and tended to aggregate into nanofloret or random stacking. Each Bi2 Fe4 O9 nanosheet was a single crystal with (001) plane as its exposed surface. Single unit-cell layered Bi2 Fe4 O9 nanosheets had a uniform thickness of 1 nm. The surface energies of various (100), (010), and (001) planes were 3.6-4.0, 5.6-15.1, and 1.7-3.0 J m-2 , respectively, in the Bi2 Fe4 O9 crystal. The formation mechanism and structural model of the as-prepared single unit-cell layered Bi2 Fe4 O9 nanosheets have been given. The growth of Bi2 Fe4 O9 nanosheets was discussed. Thermal analysis showed that the Bi2 Fe4 O9 phase was stable up to 1260 K. The thermal expansion behavior of the Bi2 Fe4 O9 nanosheet was nonlinear. The thermal expansion coefficients of the ultrathin Bi2 Fe4 O9 nanosheets on the a-, b-, c-axes, and on the unit-cell volume V were determined, showing an anisotropic thermal expansion behavior. This study is helpful for the controllable synthesis of ultrathin Bi2 Fe4 O9 nanosheets.

9.
Microb Cell Fact ; 22(1): 191, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735384

RESUMO

BACKGROUND: Fatty acid (FA) is an important platform compound for the further synthesis of high-value biofuels and oleochemicals, but chemical synthesis of FA has many limitations. One way to meet the future demand for FA could be to use microbial cell factories for FA biosynthesis. RESULTS: Thioesterase (TE; TesA, TesB, and TE9) of Corynebacterium glutamicum (CG) can potentially improve FA biosynthesis, and tesA, tesB, and te9 were overexpressed in C. glutamicum and Escherichia coli (EC), respectively, in this study. The results showed that the total fatty acid (TFA) production of CGtesB and ECtesB significantly increased to 180.52 mg/g dry cell weight (DCW) and 123.52 mg/g DCW, respectively (P < 0.05). Overexpression strains CG and EC could increase the production of C16:0, C18:1(t), C18:2, C20:1, C16:1, C18:0, and C18:1(c) (P < 0.05), respectively, and the changes of long-chain FA resulted in the enhancement of TFA production. The enzymatic properties of TesA, TesB, and TE9 in vitro were determined: they were specific for long-, broad and short-chain substrates, respectively; the optimal temperature was 30.0 °C and the optimal acid-base (pH) were 8.0, 8.0, and 9.0, respectively; they were inhibited by Fe2+, Cu2+, Zn2+, Mg2+, and K+. CONCLUSION: Overexpression TE enhances and modifies FA biosynthesis with multiple productive applications, and the enzyme properties provided useful clues for optimizing FA synthesis.


Assuntos
Corynebacterium glutamicum , Corynebacterium glutamicum/genética , Escherichia coli/genética , Biocombustíveis , Ácidos Graxos , Temperatura
10.
Inorg Chem ; 62(10): 4385-4391, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36857465

RESUMO

In recent years, the synthesis, crystalline structure, and applications of zeolite imidazole frameworks (ZIFs) have attracted extensive attention. Since the ZIF-L phase was synthesized, a new phase was observed during the heating process, but its crystal structure is unknown. The unknown new phase, which was named ZIF-L300 in this study, was confirmed again. In this study, the X-ray powder diffraction technique and Rietveld refinement were used to solve the crystalline structure of the unknown ZIF-L300 phase. The results demonstrate that ZIF-L300 has the same chemical formula (ZnC8N4H10) as in ZIF-8 and belongs to a hexagonal structure with a space group of P61. The lattice parameters have been determined as follows: a = b = 8.708(7) Å, c = 24.195(19) Å, α = ß = 90°, and γ = 120°. The X-ray absorption fine structure (XAFS) technique was also used to extract the local atomic structures. The in situ X-ray diffraction (XRD) technique was used to monitor the structural evolution of the as-prepared ZIF-L in a temperature range from room temperature to 600 °C. The results show that the sample experiences a change process from the initial ZIF-L orthorhombic phase (<210 °C), to the ZIF-L300 hexagonal phase (∼300 °C), then to an amorphous phase (∼390 °C), and finally to a zincite ZnO phase (>420 °C). These sorts of structural information are helpful to the application of ZIF materials and enrich the knowledge of the thermal stability of ZIF materials.

11.
Environ Toxicol ; 38(12): 2845-2856, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37565716

RESUMO

Numerous studies have indicated enrichment of circular RNA (circRNA) in the brain takes on a momentous role in cerebral ischemia-reperfusion (CIR) injury. A recent study discovered a novel circCRIM1, was highly expressed in the middle cerebral artery occlusion-reperfusion (MCAO/R) model. Nevertheless, its specific biological function remained unknown. The study was to explore circCRIM1 in CIR-induced neuronal apoptosis. As measured, circCRIM1 and TXNIP were up-regulated, while miR-141-3p was down-regulated in MCAO/R mouse model and OGD/R SH-SY5Y cells. Depleting circCRIM1 reduced the number of apoptotic neurons in MCAO/R rats, increased the number of Nissl bodies, prevented reactive oxygen species production and oxidative stress imbalance in brain tissues, repressed cleaved caspase-3, Bax, and Cyto C protein levels and increased Bcl-2 levels. Overexpression of circCRIM1 further repressed neuronal activity and accelerated apoptosis in OGD/R model, disrupted redox balance. Depleting circCRIM1 had the opposite effect in OGD/R model. Knocking down miR-141-3p or TXNIP weakened the effects of knocking down circCRIM1 or overexpressing circCRIM1, separately. Mechanistically, circCRIM1 exerted an active role in CIR injury via miR-141-3p to mediate TXNIP. All in all, the circCRIM1/miR-141-3p/TXNIP axis might be a latent therapeutic target for CIR injury.


Assuntos
Isquemia Encefálica , MicroRNAs , Neuroblastoma , Traumatismo por Reperfusão , Camundongos , Humanos , Ratos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Reperfusão , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Apoptose/genética , Tiorredoxinas/genética , Glucose/metabolismo , Proteínas de Ciclo Celular
12.
Drug Dev Res ; 84(7): 1482-1495, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37551766

RESUMO

Drug resistance is a major impediment to the successful treatment of glioma. This study aimed to elucidate the effects and mechanisms of the long noncoding RNA membrane-associated guanylate kinase inverted-2 antisense RNA 3 (MAGI2-AS3) on temozolomide (TMZ) resistance in glioma cells. MAGI2-AS3 expression in TMZ-resistant glioblastoma (GBM) cells was analyzed using the Gene Expression Omnibus data set GSE113510 and quantitative real-time PCR (qRT-PCR). Cell viability and TMZ half-maximal inhibitory concentration values were determined using the MTT assay. Apoptosis and cell cycle distribution were evaluated using flow cytometry. The expression of multidrug resistance 1 (MDR1), ATP-binding cassette superfamily G member 2 (ABCG2), protein kinase B (Akt), and phosphorylated Akt was detected using qRT-PCR and/or western blot analysis. MAGI2-AS3 was expressed at low levels in TMZ-resistant GBM cells relative to that in their parental cells. MAGI2-AS3 re-expression alleviated TMZ resistance in TMZ-resistant GBM cells. MAGI2-AS3 overexpression also accelerated TMZ-induced apoptosis and G2/M phase arrest. Mechanistically, MAGI2-AS3 overexpression reduced MDR1 and ABCG2 expression and inhibited the Akt pathway, whereas Akt overexpression abrogated the reduction in MDR1 and ABCG2 expression induced by MAGI2-AS3. Moreover, activation of the Akt pathway inhibited the effects of MAGI2-AS3 on TMZ resistance. MAGI2-AS3 inhibited tumor growth and enhanced the suppressive effect of TMZ on glioma tumorigenesis in vivo. In conclusion, MAGI2-AS3 reverses TMZ resistance in glioma cells by inactivating the Akt pathway.


Assuntos
Glioblastoma , Glioma , MicroRNAs , RNA Longo não Codificante , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , RNA Antissenso/farmacologia , RNA Antissenso/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , MicroRNAs/genética , Resistencia a Medicamentos Antineoplásicos/genética , RNA Longo não Codificante/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/farmacologia , Guanilato Quinases/genética , Guanilato Quinases/metabolismo , Guanilato Quinases/farmacologia
13.
J Synchrotron Radiat ; 29(Pt 2): 424-430, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35254305

RESUMO

The microminiaturization of detectors used to record the intensity of X-ray beams is very favorable for combined X-ray experimental techniques. In this paper, chemical-vapor-deposited (CVD) polycrystalline diamond film was used to fabricate a micro-detector owing to its well controlled size, good thermostability, and appropriate conductivity. The preparation process and the main components of the CVD diamond micro-detector are described. The external dimensions of the packaged CVD diamond micro-detector are 15 mm × 7.8 mm × 5.8 mm. To demonstrate the performance of the detector, K-edge X-ray absorption fine-structure (XAFS) spectra of Cr, Fe, Cu, and Se foils were collected using the CVD diamond micro-detector and routine ion chamber. These XAFS measurements were performed at beamline 1W2B of Beijing Synchrotron Radiation Facility, covering an energy range from 5.5 to 13.5 keV. By comparison, it can be seen that the CVD diamond micro-detector shows a more excellent performance than the routine ion-chamber in recording these XAFS spectra. The successful application of the CVD diamond micro-detector in XAFS measurements shows its feasibility in recording X-ray intensity.

14.
Inorg Chem ; 61(40): 16093-16102, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36154022

RESUMO

The formation and self-assembly mechanisms of nanomaterials are of great significance for the preparation and application of materials. In this study, the orientationally aggregated CoOOH nanosheets and the self-assembled strings of CoOOH nanodiscs were prepared by hydrothermal method. The formation and self-assembly mechanisms of CoOOH nanodiscs were investigated by XRD, XPS, DLS, TEM, and SEM techniques, as well as DFT calculations. The results show that the formation process of the stacked CoOOH nanodiscs was driven by surface energy and can be divided into four steps: nucleation and growth of CoOOH primary nanosheets; oriented attachment of CoOOH nanosheets; self-assembly of CoOOH nanodiscs; and aggregation of strings of CoOOH nanodiscs. This study contributes meaningfully to the controllable preparation of CoOOH nanomaterials.

15.
Inorg Chem ; 61(5): 2669-2678, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35073051

RESUMO

The formation mechanism of nanoparticles is of great significance for the controllable synthesis, structural design, and performance optimization of nanomaterials. In this paper, an economical hydrothermal method was used to synthesize zinc oxide (ZnO) nanorods. X-ray diffraction, X-ray absorption fine structure, and small-angle X-ray scattering techniques were used to probe the structural changes. Scanning electron microscopy and high-resolution transmission electron microscopy were used to observe the morphologies of the products. A self-designed in situ temperature-pressure sample cell was used to control the hydrothermal conditions. The results demonstrate that an unknown intermediate phase, Zn(HCO3)2·H2O, was first formed at 50 °C, having a morphology of nanoflakes with a average thickness of about 35 nm. The intermediate phase Zn(HCO3)2·H2O was determined to have a monoclinic structure with space group P1211 and the following lattice parameters: a = 11.567 Å, b = 3.410 Å, c = 5.358 Å, ß = 96.0011°, and Z = 2. After a hydrothermal temperature of 140 °C, CO2 and H2O were evaporated from the Zn(HCO3)2·H2O intermediate product and the ZnO nanorods with a wurtzite structure were formed. The final ZnO nanorods have an average diameter of about 45 nm and an average length of about 2 µm. The axial direction of the ZnO nanorods is the [001] crystallographic direction. By virtue of understanding the formation mechanism, this work is helpful for the controllable synthesis of ZnO nanoparticles.

16.
J Cell Physiol ; 236(1): 121-130, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32803763

RESUMO

Long noncoding RNA nuclear paraspeckle assembly transcript 1 (NEAT1) is regarded as an oncogene in multiple cancers. Previous studies have shown that NEAT1 is involved in the proliferation and tumorigenesis of glioma cells, while miR-185-5p functions as a tumor suppressor in glioma. However, the underlying molecular mechanism of NEAT1 in glioma, especially in association with miR-185-5p, has not been studied. In this study, we first demonstrated that NEAT1 expression was upregulated, and miR-185-5p downregulated in glioma tissues and cells. More important, NEAT1 expression was negatively correlated with miR-185-5p expression in glioma tissues. In vitro and in vivo experiments verified that NEAT1 was a competing endogenous RNA for miR-185-5p for promoting DNA methyltransferase 1 (DNMT1) expression and activated mammalian target of rapamycin (mTOR) signaling, thus inhibiting apoptosis, and promoting glioma migration, proliferation, and epithelial-mesenchymal transition process. Furthermore, NEAT1 knockdown suppressed tumor growth and reduced the expression of proliferation antigen Ki-67, DNMT1, and mTOR, but upregulated the expression of miR-185-5p in vivo. Finally, with mTOR inhibitor rapamycin, we confirmed that NEAT1 promoted glioma activity through mTOR signaling both in vitro and in vivo. In conclusion, these results suggest that NEAT1 promotes glioma tumorigenesis via miR-185-5p/DNMT1/mTOR signaling, which may provide a new target for the diagnosis and therapy of glioma.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1/genética , Glioma/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Progressão da Doença , Regulação para Baixo/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/genética , Glioma/patologia , Humanos , Regulação para Cima/genética
17.
Mol Med ; 27(1): 107, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521353

RESUMO

OBJECTIVES: Studies have widely explored in the filed of ischemic stroke (IS) with their focus on transcription factors. However, few studies have pivoted on sex determining region Y-box 2 (SOX2) in IS. Thus, this study is launched to figure out the mechanisms of SOX2 in IS. METHODS: Rat middle cerebral artery occlusion (MCAO) was established as a stroke model. MCAO rats were injected with depleted SOX2 or long non-coding RNA plasmacytoma variant translocation 1 (PVT1) to explore their roles in neurological deficits, cerebral water content, neuron survival, apoptosis and oxidative stress. The relationship among SOX2, PVT1, microRNA (miR)-24-3p and signal transducer and activator of transcription 3 (STAT3) was verified by a series of experiments. RESULTS: SOX2, PVT1 and STAT3 were highly expressed while miR-24-3p was poorly expressed in cerebral cortex tissues of MCAO rats. Depleted SOX2 or PVT1 alleviated brain injury in MCAO rats as reflected by neuronal apoptosis and oxidative stress restriction, brain water content reduction, and neurological deficit and neuron survival improvements. Overexpression of PVT1 functioned oppositely. Restored miR-24-3p abolished PVT1 overexpression-induced brain injury in MCAO rats. SOX2 directly promoted PVT1 expression and further increased STAT3 by sponging miR-24-3p. CONCLUSION: This study presents that depleting SOX2 improves IS via PVT1/miR-24-3p/STAT3 axis which may broaden our knowledge about the mechanisms of SOX2/PVT1/miR-24-3p/STAT3 axis and provide a reference of therapy for IS.


Assuntos
Regulação da Expressão Gênica , AVC Isquêmico/etiologia , AVC Isquêmico/metabolismo , MicroRNAs/genética , RNA Longo não Codificante/genética , Fatores de Transcrição SOXB1/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Biomarcadores , Linhagem Celular , Suscetibilidade a Doenças , Genes Reporter , Humanos , Imuno-Histoquímica , AVC Isquêmico/patologia , Masculino , Estresse Oxidativo , Interferência de RNA , Ratos , Fatores de Transcrição SOXB1/genética , Transdução de Sinais
18.
Inorg Chem ; 58(10): 7054-7061, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31063358

RESUMO

The formation process and product control are very important in material synthesis. In this study, a facile one-pot hydrothermal method was used to prepare Co3O4 and CoOOH. H2O2 was used to modulate the formation process and control the final product by changing its concentration. The crystalline structures and morphologies of the as-prepared products were characterized by X-ray diffraction (XRD), Raman spectra, and scanning electron microscopy (SEM) techniques. It was found that the concentration of H2O2 influenced not only the phase of the final products but also their morphologies. The influences of H2O2 concentration on the precursor formation and the reaction path have been revealed. At a low concentration of H2O2 (5 wt %), the formed precursor is Co(CO3)0.5(OH)·0.11H2O, which can be directly transformed into Co3O4 upon increasing the hydrothermal time. At a medium concentration (15-20 wt %), the formed precursor and the final product are all CoOOH. At a high concentration (30 wt %), the formed precursor is CoOOH, and the final product is Co3O4. H2O2 plays the role of oxidant agent at the initial stage or reducing agent at the subsequent stage. This study offers a H2O2-concentration modulating method for the formation of Co3O4 and CoOOH.

19.
Mol Biol Rep ; 46(3): 2771-2778, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30911973

RESUMO

Certain long non-coding RNAs (lncRNAs) have been reported to be differentially expressed in various human cancer types, including prostate cancer (PCa). PCa is the most commonly diagnosed cancer type in men and lacks sensitive and accurate biomarkers. Emerging studies have indicated that certain lncRNAs are dysregulated and have crucial roles in PCa progression. The present study reported that the novel lncRNA small nucleolar RNA host gene 6 (SNHG6) is overexpressed in PCa compared with that in normal prostate tissues. In The Cancer Genome Atlas and Taylor datasets, high expression of SNHG6 in PCa tissues was identified to be significantly associated with shorter disease-free survival. In order to reveal the potential mechanisms of the role of SNHG6 in PCa, SNHG6-associated protein-protein interaction networks were constructed. Bioinformatics analysis revealed that these SNHG6-interacting genes were associated with translation, nuclear-transcribed mRNA catabolic process, ribosomal RNA processing and mRNA splicing. Although further functional validation is warranted, the present study suggests that SNHG6 is a potential novel therapeutic target and prognostic biomarker for PCa.


Assuntos
Neoplasias da Próstata/genética , RNA Longo não Codificante/genética , Adulto , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Bases de Dados Genéticas , Progressão da Doença , Humanos , Masculino , Estadiamento de Neoplasias , Prognóstico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , RNA Longo não Codificante/metabolismo
20.
Med Princ Pract ; 28(2): 124-132, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30544100

RESUMO

OBJECTIVE: Prostate cancer (PCa) is one of the most prevalent types of cancer among men worldwide. The incidence of PCa is increasing in China. Therefore, there is an urgent need to identify novel diagnostic and prognostic markers for PCa to improve the treatment of the disease. METHODS: The Cancer Genome Atlas (TCGA) and GEO database were used to analyze the expression of miR-192, and the relationship between miR-192 and the clinical features of patients with PCa. Cell cycle and cell proliferation assay were used to detect the functional roles of miR-192 in PCa. Bioinformatic analysis for miR-192-5p was performed using gene ontology and KEGG analysis. RESULTS: By analyzing the dataset of TCGA, we found that miR-192 was overexpressed in PCa samples compared to normal tissues and was upregulated in high-grade PCa compared to low-grade PCa. We also observed that higher miR-192 expression was associated with a shorter biochemical recurrence-free survival time. Our results also demonstrated that miR-192 promoted PCa cell proliferation and cell cycle progression. CONCLUSION: These results suggest that miR-192 may be considered for use as a potential diagnostic and therapeutic target of PCa.


Assuntos
Transformação Celular Neoplásica/genética , MicroRNAs/genética , Neoplasias da Próstata/genética , Linhagem Celular Tumoral , China , Bases de Dados de Ácidos Nucleicos , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA