Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Mater ; 17(4): 355-360, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29581573

RESUMO

Superhydrophobicity is a remarkable evolutionary adaption manifested by several natural surfaces. Artificial superhydrophobic coatings with good mechanical robustness, substrate adhesion and chemical robustness have been achieved separately. However, a simultaneous demonstration of these features along with resistance to liquid impalement via high-speed drop/jet impact is challenging. Here, we describe all-organic, flexible superhydrophobic nanocomposite coatings that demonstrate strong mechanical robustness under cyclic tape peels and Taber abrasion, sustain exposure to highly corrosive media, namely aqua regia and sodium hydroxide solutions, and can be applied to surfaces through scalable techniques such as spraying and brushing. In addition, the mechanical flexibility of our coatings enables impalement resistance to high-speed drops and turbulent jets at least up to ~35 m s-1 and a Weber number of ~43,000. With multifaceted robustness and scalability, these coatings should find potential usage in harsh chemical engineering as well as infrastructure, transport vehicles and communication equipment.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Fenômenos Mecânicos , Compostos Orgânicos/química , Modelos Moleculares , Conformação Molecular , Nanoestruturas/química
2.
Adv Sci (Weinh) ; 10(3): e2204925, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36372543

RESUMO

Mechanoluminescence, a smart luminescence phenomenon in which light energy is directly produced by a mechanical force, has recently received significant attention because of its important applications in fields such as visible strain sensing and structural health monitoring. Up to present, hundreds of inorganic and organic mechanoluminescent smart materials have been discovered and studied. Among them, strontium-aluminate-based materials are an important class of inorganic mechanoluminescent materials for fundamental research and practical applications attributed to their extremely low force/pressure threshold of mechanoluminescence, efficient photoluminescence, persistent afterglow, and a relatively low synthesis cost. This paper presents a systematic and comprehensive review of strontium-aluminate-based luminescent materials' mechanoluminescence phenomena, mechanisms, material synthesis techniques, and related applications. Besides of summarizing the early and the latest research on this material system, an outlook is provided on its environmental, energy issue and future applications in smart wearable devices, advanced energy-saving lighting and displays.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA