RESUMO
The host-seeking activity of hematophagous arthropods is essential for arboviral transmission. Here, we demonstrate that mosquito-transmitted flaviviruses can manipulate host skin microbiota to produce a scent that attracts mosquitoes. We observed that Aedes mosquitoes preferred to seek and feed on mice infected by dengue and Zika viruses. Acetophenone, a volatile compound that is predominantly produced by the skin microbiota, was enriched in the volatiles from the infected hosts to potently stimulate mosquito olfaction for attractiveness. Of note, acetophenone emission was higher in dengue patients than in healthy people. Mechanistically, flaviviruses infection suppressed the expression of RELMα, an essential antimicrobial protein on host skin, thereby leading to the expansion of acetophenone-producing commensal bacteria and, consequently, a high acetophenone level. Given that RELMα can be specifically induced by a vitamin A derivative, the dietary administration of isotretinoin to flavivirus-infected animals interrupted flavivirus life cycle by reducing mosquito host-seeking activity, thus providing a strategy of arboviral control.
RESUMO
Pathogens have co-evolved with mosquitoes to optimize transmission to hosts. Mosquito salivary-gland extract is known to modulate host immune responses and facilitate pathogen transmission, but the underlying molecular mechanisms of this have remained unknown. In this study, we identified and characterized a prominent 15-kilodalton protein, LTRIN, obtained from the salivary glands of the mosquito Aedes aegypti. LTRIN expression was upregulated in blood-fed mosquitoes, and LTRIN facilitated the transmission of Zika virus (ZIKV) and exacerbated its pathogenicity by interfering with signaling through the lymphotoxin-ß receptor (LTßR). Mechanically, LTRIN bound to LTßR and 'preferentially' inhibited signaling via the transcription factor NF-κB and the production of inflammatory cytokines by interfering with the dimerization of LTßR during infection with ZIKV. Furthermore, treatment with antibody to LTRIN inhibited mosquito-mediated infection with ZIKV, and abolishing LTßR potentiated the infectivity of ZIKV both in vitro and in vivo. This study provides deeper insight into the transmission of mosquito-borne diseases in nature and supports the therapeutic potential of inhibiting the action of LTRIN to disrupt ZIKV transmission.
Assuntos
Aedes/virologia , Proteínas de Insetos/metabolismo , Saliva/metabolismo , Infecção por Zika virus/transmissão , Zika virus/patogenicidade , Animais , Humanos , Receptor beta de Linfotoxina/imunologia , Receptor beta de Linfotoxina/metabolismo , Camundongos , Mosquitos Vetores/química , Mosquitos Vetores/imunologia , Mosquitos Vetores/metabolismo , Saliva/químicaRESUMO
Mosquitoes transmit many disease-relevant flaviviruses. Efficient viral transmission to mammalian hosts requires mosquito salivary factors. However, the specific salivary components facilitating viral transmission and their mechanisms of action remain largely unknown. Here, we show that a female mosquito salivary gland-specific protein, here named A. aegypti Neutrophil Recruitment Protein (AaNRP), facilitates the transmission of Zika and dengue viruses. AaNRP promotes a rapid influx of neutrophils, followed by virus-susceptible myeloid cells toward mosquito bite sites, which facilitates establishment of local infection and systemic dissemination. Mechanistically, AaNRP engages TLR1 and TLR4 of skin-resident macrophages and activates MyD88-dependent NF-κB signaling to induce the expression of neutrophil chemoattractants. Inhibition of MyD88-NF-κB signaling with the dietary phytochemical resveratrol reduces AaNRP-mediated enhancement of flavivirus transmission by mosquitoes. These findings exemplify how salivary components can aid viral transmission, and suggest a potential prophylactic target.
Assuntos
Aedes , Zika virus , Animais , Aedes/virologia , Aedes/metabolismo , Feminino , Zika virus/fisiologia , Camundongos , Vírus da Dengue/fisiologia , Proteínas e Peptídeos Salivares/metabolismo , Mosquitos Vetores/virologia , Proteínas de Insetos/metabolismo , Células Mieloides/virologia , Células Mieloides/metabolismo , Infecção por Zika virus/transmissão , Infecção por Zika virus/virologia , Infecção por Zika virus/metabolismo , Dengue/transmissão , Dengue/virologia , Dengue/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/genéticaRESUMO
Mosquito-borne flaviviruses such as dengue (DENV) and Zika (ZIKV) cause hundreds of millions of infections annually. The single-stranded RNA genome of flaviviruses is translated into a polyprotein, which is cleaved equally into individual functional proteins. While structural proteins are packaged into progeny virions and released, most of the nonstructural proteins remain intracellular and could become cytotoxic if accumulated over time. However, the mechanism by which nonstructural proteins are maintained at the levels optimal for cellular fitness and viral replication remains unknown. Here, we identified that the ubiquitin E3 ligase HRD1 is essential for flaviviruses infections in both mammalian hosts and mosquitoes. HRD1 directly interacts with flavivirus NS4A and ubiquitylates a conserved lysine residue for ER-associated degradation. This mechanism avoids excessive accumulation of NS4A, which otherwise interrupts the expression of processed flavivirus proteins in the ER. Furthermore, a small-molecule inhibitor of HRD1 named LS-102 effectively interrupts DENV2 infection in both mice and Aedes aegypti mosquitoes, and significantly disturbs DENV transmission from the infected hosts to mosquitoes owing to reduced viremia. Taken together, this study demonstrates that flaviviruses have evolved a sophisticated mechanism to exploit the ubiquitination system to balance the homeostasis of viral proteins for their own advantage and provides a potential therapeutic target to interrupt flavivirus infection and transmission.
Assuntos
Aedes , Infecções por Flavivirus , Flavivirus , Infecção por Zika virus , Zika virus , Animais , Camundongos , Flavivirus/genética , Zika virus/genética , Ubiquitina/metabolismo , Ligases/metabolismo , Proteínas Virais/metabolismo , MamíferosRESUMO
SARS-CoV-2 spike protein (SARS-2-S) induced cell-cell fusion in uninfected cells may occur in long COVID-19 syndrome, as circulating SARS-2-S or extracellular vesicles containing SARS-2-S (S-EVs) were found to be prevalent in post-acute sequelae of COVID-19 (PASC) for up to 12 months after diagnosis. Although isolated recombinant SARS-2-S protein has been shown to increase the SASP in senescent ACE2-expressing cells, the direct linkage of SARS-2-S syncytia with senescence in the absence of virus infection and the degree to which SARS-2-S syncytia affect pathology in the setting of cardiac dysfunction are unknown. Here, we found that the senescent outcome of SARS-2-S induced syncytia exacerbated heart failure progression. We first demonstrated that syncytium formation in cells expressing SARS-2-S delivered by DNA plasmid or LNP-mRNA exhibits a senescence-like phenotype. Extracellular vesicles containing SARS-2-S (S-EVs) also confer a potent ability to form senescent syncytia without de novo synthesis of SARS-2-S. However, it is important to note that currently approved COVID-19 mRNA vaccines do not induce syncytium formation or cellular senescence. Mechanistically, SARS-2-S syncytia provoke the formation of functional MAVS aggregates, which regulate the senescence fate of SARS-2-S syncytia by TNFα. We further demonstrate that senescent SARS-2-S syncytia exhibit shrinked morphology, leading to the activation of WNK1 and impaired cardiac metabolism. In pre-existing heart failure mice, the WNK1 inhibitor WNK463, anti-syncytial drug niclosamide, and senolytic dasatinib protect the heart from exacerbated heart failure triggered by SARS-2-S. Our findings thus suggest a potential mechanism for COVID-19-mediated cardiac pathology and recommend the application of WNK1 inhibitor for therapy especially in individuals with post-acute sequelae of COVID-19.
Assuntos
COVID-19 , Senescência Celular , Células Gigantes , Insuficiência Cardíaca , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/virologia , Animais , Células Gigantes/virologia , Células Gigantes/metabolismo , Células Gigantes/patologia , COVID-19/metabolismo , COVID-19/complicações , COVID-19/virologia , COVID-19/patologia , Humanos , Glicoproteína da Espícula de Coronavírus/metabolismo , Camundongos , Vesículas Extracelulares/metabolismoRESUMO
Viruses have developed various strategies to ensure their survival and transmission. One intriguing strategy involves manipulating the behavior of infected arthropod vectors and hosts. Through intricate interactions, viruses can modify vector behavior, aiding in crossing barriers and improving transmission to new hosts. This manipulation may include altering vector feeding preferences, thus promoting virus transmission to susceptible individuals. In addition, viruses employ diverse dissemination methods, including cell-to-cell and intercellular transmission via extracellular vesicles. These strategies allow viruses to establish themselves in favorable environments, optimize replication, and increase the likelihood of spreading to other individuals. Understanding these complex viral strategies offers valuable insights into their biology, transmission dynamics, and potential interventions for controlling infections. Unraveling interactions between viruses, hosts, and vectors enables the development of targeted approaches to effectively mitigate viral diseases and prevent transmission.
Assuntos
Viroses , Animais , Humanos , Viroses/transmissão , Viroses/prevenção & controle , Viroses/virologia , Vírus , Vetores Artrópodes/virologia , Interações Hospedeiro-Patógeno , Vesículas Extracelulares/virologia , Replicação ViralRESUMO
Dengue virus (DENV) gains genetic mutations during continuous transmission and evolution, making the virus more adaptive and virulent. The clade of DENV-1 genotype I has expanded and become the predominant genotype in Asia and the Pacific areas, but the underlying mechanisms are unclear. A combined analysis of nonsynonymous mutations in domain III of the envelope protein and their biological effects on virus pathogenesis and transmission was evaluated. Phylogenetic analyses found three nonsynonymous mutations (V324I, V351L, and V380I) in domain III of the envelope protein, which emerged in 1970s-1990s and stably inherited and expanded in contemporary strains after 2000. We generated reverse-mutated viruses (I324V, L351V, and I380V) based on an infectious clone of an epidemic DENV-1 strain (NIID02-20), and the results suggested that the infectivity of the contemporary epidemic virus (wild type, WT) has increased compared to the reverse mutant viruses in mammalian hosts but not mosquito vectors. The WT virus showed a higher binding affinity to host cells and increased virion stability. In addition, weaker immunogenicity and higher resistance to neutralizing antibodies of the WT virus indicated a trend of immune escape. The data suggested that nonsynonymous mutations of the E protein (V324I, V351L, and V380I) promote infectivity and immune evasion of DENV-1 genotype I, which may facilitate its onward transmission on a global scale. IMPORTANCE: We provide evidence that minor sequence variation among dengue virus (DENV) strains can result in increased adaptability and virulence, impacting both the biology of the virus and the antiviral immune response. The genetic mutations of DENV-1 gained during continuous transmission and evolution will offer new clues for the design of novel vaccines against flaviviruses.
Assuntos
Vírus da Dengue , Dengue , Evolução Molecular , Genótipo , Mutação , Filogenia , Proteínas do Envelope Viral , Vírus da Dengue/genética , Vírus da Dengue/classificação , Proteínas do Envelope Viral/genética , Humanos , Animais , Dengue/virologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linhagem CelularRESUMO
Zika virus (ZIKV) remains a significant public health threat worldwide. A number of adaptive mutations have accumulated within the genome of ZIKV during global transmission, some of which have been linked to specific phenotypes. ZIKV maintains an alternating cycle of replication between mosquitoes and vertebrate hosts, but the role of mosquito-specific adaptive mutations in ZIKV has not been well investigated. In this study, we demonstrated that serial passaging of ZIKV in mosquito Aag2 cells led to the emergence of critical amino acid substitutions, including A94V in the prM protein and V153D and H401Y in the E protein. Further characterization via reverse genetics revealed that the H401Y substitution in the E protein did not augment viral replication in mosquitoes but significantly enhanced neurovirulence and lethality compared with those of the wild-type (WT) virus in mice. More importantly, the H401Y mutant maintained its virulence phenotype in mice after propagation in mosquitoes in mosquito-mouse cycle model. In particular, recombinant ZIKV harboring the H401Y substitution showed enhanced competitive fitness over WT ZIKV in various mammalian cells and mouse brains, but not in mosquito cells. Notably, the H401Y substitution in the ZIKV E protein has been detected in recent isolates derived from both mosquitoes and humans in Asia and the Americas. In summary, our findings not only identify a novel virulence determinant of ZIKV but also highlight the complexity of the relationship between the evolution of vector-borne viruses and their clinical outcome in nature. IMPORTANCE: Zika virus (ZIKV) is an important arbovirus with a global impact. Experimental evolution by serial passaging of ZIKV in susceptible cells has led to the identification of a panel of critical amino acid substitutions with specific functions. Herein, we identified a mosquito cell-derived substitution, H401Y, in the ZIKV E protein via experimental evolution. The H401Y substitution significantly enhanced viral virulence and fitness in mammal cells and mice. Notably, the H401Y substitution has been detected in recent mosquito and human isolates from regions spanning Asia to the Americas. Our work elucidates unrecognized virulence determinant in the ZIKV genome that warrants urgent attention. Moreover, the findings underscore the critical need for extensive molecular surveillance and rigorous clinical observation to establish the potential impact in natural circulation. These endeavors are crucial for unraveling the potential of mutation to act as a catalyst for future epidemics, thereby preempting the public health challenges it may pose.
RESUMO
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and characterized by dysregulated immune response. Studies have shown that the SARS-CoV-2 accessory protein ORF7b induces host cell apoptosis through the tumor necrosis factor alpha (TNF-α) pathway and blocks the production of interferon beta (IFN-ß). The underlying mechanism remains to be investigated. In this study, we found that ORF7b facilitated viral infection and production, and inhibited the RIG-I-like receptor (RLR) signaling pathway through selectively interacting with mitochondrial antiviral-signaling protein (MAVS). MAVS439-466 region and MAVS Lys461 were essential for the physical association between MAVS and ORF7b, and the inhibition of the RLR signaling pathway by ORF7b. MAVSK461/K63 ubiquitination was essential for the RLR signaling regulated by the MAVS-ORF7b complex. ORF7b interfered with the recruitment of tumor necrosis factor receptor-related factor 6 (TRAF6) and the activation of the RLR signaling pathway by MAVS. Furthermore, interfering peptides targeting the ORF7b complex reversed the ORF7b-suppressed MAVS-RLR signaling pathway. The most potent interfering peptide V disrupts the formation of ORF7b tetramers, reverses the levels of the ORF7b-inhibited physical association between MAVS and TRAF6, leading to the suppression of viral growth and infection. Overall, this study provides a mechanism for the suppression of innate immunity by SARS-CoV-2 infection and the mechanism-based approach via interfering peptides to potentially prevent SARS-CoV-2 infection.IMPORTANCEThe pandemic coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and continues to be a threat to public health. It is imperative to understand the biology of SARS-CoV-2 infection and find approaches to prevent SARS-CoV-2 infection and ameliorate COVID-19. Multiple SARS-CoV-2 proteins are known to function on the innate immune response, but the underlying mechanism remains unknown. This study shows that ORF7b inhibits the RIG-I-like receptor (RLR) signaling pathway through the physical association between ORF7b and mitochondrial antiviral-signaling protein (MAVS), impairing the K63-linked MAVS polyubiquitination and its recruitment of tumor necrosis factor receptor-related factor 6 (TRAF6) to MAVS. The most potent interfering peptide V targeting the ORF7b-MAVS complex may reverse the suppression of the MAVS-mediated RLR signaling pathway by ORF7b and prevent viral infection and production. This study may provide new insights into the pathogenic mechanism of SARS-CoV-2 and a strategy to develop new drugs to prevent SARS-CoV-2 infection.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , COVID-19 , SARS-CoV-2 , Transdução de Sinais , Animais , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Apoptose , COVID-19/virologia , COVID-19/imunologia , COVID-19/metabolismo , Proteína DEAD-box 58/metabolismo , Células HEK293 , Imunidade Inata , Interferon beta/metabolismo , Receptores Imunológicos/metabolismo , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ubiquitinação , Proteínas Virais Reguladoras e Acessórias/metabolismo , Proteínas Virais Reguladoras e Acessórias/genéticaRESUMO
West Nile virus (WNV) is the most common arthropod-borne flavivirus in the United States; however, the vector ligand(s) that participate in infection are not known. We now show that an Aedes aegypti C-type lectin, mosGCTL-1, is induced by WNV, interacts with WNV in a calcium-dependent manner, and facilitates infection in vivo and in vitro. A mosquito homolog of human CD45 in A. aegypti, designated mosPTP-1, recruits mosGCTL-1 to enable viral attachment to cells and to enhance viral entry. In vivo experiments show that mosGCTL-1 and mosPTP-1 function as part of the same pathway and are critical for WNV infection of mosquitoes. A similar phenomenon was also observed in Culex quinquefasciatus, a natural vector of WNV, further demonstrating that these genes participate in WNV infection. During the mosquito blood-feeding process, WNV infection was blocked in vivo with mosGCTL-1 antibodies. A molecular understanding of flaviviral-arthropod interactions may lead to strategies to control viral dissemination in nature.
Assuntos
Aedes/virologia , Culex/virologia , Proteínas de Insetos/metabolismo , Lectinas Tipo C/metabolismo , Antígenos Comuns de Leucócito/metabolismo , Internalização do Vírus , Vírus do Nilo Ocidental/fisiologia , Animais , Humanos , Antígenos Comuns de Leucócito/químicaRESUMO
Perilipin-2 (PLIN2) can anchor to lipid droplets (LDs) and play a crucial role in regulating nascent LDs formation. Bimolecular fluorescence complementation (BiFC) and flow cytometry were examined to verify the PLIN2-CGI-58 interaction efficiency in bovine adipocytes. GST-Pulldown assay was used to detect the key site arginine315 function in PLIN2-CGI-58 interaction. Experiments were also examined to research these mutations function of PLIN2 in LDs formation during adipocytes differentiation, LDs were measured after staining by BODIPY, lipogenesis-related genes were also detected. Results showed that Leucine (L371A, L311A) and glycine (G369A, G376A) mutations reduced interaction efficiencies. Serine (S367A) mutations enhanced the interaction efficiency. Arginine (R315A) mutations resulted in loss of fluorescence in the cytoplasm and disrupted the interaction with CGI-58, as verified by pulldown assay. R315W mutations resulted in a significant increase in the number of LDs compared with wild-type (WT) PLIN2 or the R315A mutations. Lipogenesis-related genes were either up- or downregulated when mutated PLIN2 interacted with CGI-58. Arginine315 in PLIN2 is required for the PLIN2-CGI-58 interface and could regulate nascent LD formation and lipogenesis. This study is the first to study amino acids on the PLIN2 interface during interaction with CGI-58 in bovine and highlight the role played by PLIN2 in the regulation of bovine adipocyte lipogenesis.
Assuntos
Arginina , Gotículas Lipídicas , Animais , Bovinos , Perilipina-2/genética , Perilipina-2/química , Perilipina-2/metabolismo , Arginina/genética , Arginina/metabolismo , Gotículas Lipídicas/metabolismo , Mutação , Adipócitos/metabolismo , Metabolismo dos LipídeosRESUMO
Grain boundaries (GBs) in two-dimensional (2D) covalent organic frameworks (COFs) unavoidably form during the fabrication process, playing pivotal roles in the physical characteristics of COFs. Herein, molecular dynamics simulations were employed to elucidate the fracture failure and thermal transport mechanisms of polycrystalline COFs (p-COFs). The results revealed that the tilt angle of GBs significantly influences out-of-plane wrinkles and residual stress in monolayer p-COFs. The tensile strength of p-COFs can be enhanced and weakened with the tilt angle, which exhibits an inverse relationship with the defect density. The crack always originates from weaker heptagon rings during uniaxial tension. Notably, the thermal transport in p-COFs is insensitive to the GBs due to the variation of minor polymer chain length at defects, which is abnormal for other 2D crystalline materials. This study contributes insights into the impact of GBs in p-COFs and offers theoretical guidance for structural design and practical applications of advanced COFs.
RESUMO
The development of multifunctional MXene-based fabrics for smart textiles and portable devices has garnered significant attention. However, very limited studies have focused on their structure design and associated mechanical properties. Here, the supertough MXene fiber felts composed of MXene/sodium alginate (SA) fibers were fabricated. The fracture strength and bending stiffness of felts can be up to 97.8 MPa and 1.04 N mm2, respectively. Besides, the fracture toughness of felts was evaluated using the classic Griffith theory, yielding to a critical stress intensity factor of 1.79 MPam. In addition, this kind of felt presents outstanding electrothermal conversion performance (up to 119 °C at a voltage of 2.5 V), high cryogenic and high-temperature tolerance of photothermal conversion performance (-196 to 160 °C), and excellent electromagnetic interference (EMI) shielding effectiveness (54.4 dB in the X-band). This work provides new structural design concepts for high-performance MXene-based textiles, broadening their future applications.
RESUMO
BACKGROUND: Indigenous Chinese cattle have abundant genetic diversity and a long history of artificial selection, giving local breeds advantages in adaptability, forage tolerance and resistance. The detection of selective sweeps and comparative genome analysis of selected breeds and ancestral populations provide a basis for understanding differences among breeds and for the identification and utilization of candidate genes. We investigated genetic diversity, population structure, and signatures of selection using genome-wide sequencing data for a new breed of Qinchuan cattle (QNC, n = 21), ancestral Qinchuan cattle (QCC, n = 20), and Zaosheng cattle (ZSC, n = 19). RESULTS: A population structure analysis showed that the ancestry components of QNC and ZSC were similar. In addition, the QNC and ZSC groups showed higher proportions of European taurine ancestry than that of QCC, and this may explain the larger body size of QNC, approaching that of European cattle under long-term domestication and selection. A neighbor-joining tree revealed that QCC individuals were closely related, whereas QNC formed a distinct group. To search for signatures of selection in the QNC genome, we evaluated nucleotide diversity (θπ), the fixation index (FST) and Tajima's D. Overlapping selective sweeps were enriched for one KEGG pathway, the apelin signaling pathway, and included five candidate genes (MEF2A, SMAD2, CAMK4, RPS6, and PIK3CG). We performed a comprehensive review of genomic variants in QNC, QCC, and ZSC using whole-genome sequencing data. QCC was rich in novel genetic diversity, while diversity in QNC and ZSC cattle was reduced due to strong artificial selection, with divergence from the original cattle. CONCLUSIONS: We identified candidate genes associated with production traits. These results support the success of selective breeding and can guide further breeding and resource conservation of Qinchuan cattle.
Assuntos
Variação Genética , Seleção Genética , Animais , Bovinos/genética , Genômica/métodos , Polimorfismo de Nucleotídeo Único , Genética Populacional , Estudo de Associação Genômica Ampla , Genoma , CruzamentoRESUMO
Vapor-driven smart Janus materials have made significant advancements in intelligent monitoring, control, and interaction, etc. Nevertheless, the development of ultrafast response single-layer Janus membrane, along with a deep exploration of the smart response mechanisms, remains a long-term endeavor. Here, the successful synthesis of a high-crystallinity single-layer Covalent organic framework (COF) Janus membrane is reported by morphology control. This kind of membrane displays superior mechanical properties and specific surface area, along with excellent responsiveness to CH2Cl2 vapor. The analysis of the underlying mechanisms reveals that the vapor-induced breathing effect of the COF and the stress mismatch of the Janus structure play a crucial role in its smart deformation performance. It is believed that this COF Janus membrane holds promise for complex tasks in various fields.
RESUMO
BACKGROUND: Early-onset prostate cancer (EOPC, ≤ 55 years) has a unique clinical entity harboring high genetic risk, but the majority of EOPC patients still substantial opportunity to be early-detected thus suffering an unfavorable prognosis. A refined understanding of age-based polygenic risk score (PRS) for prostate cancer (PCa) would be essential for personalized risk stratification. METHODS: We included 167,517 male participants [4882 cases including 205 EOPC and 4677 late-onset PCa (LOPC)] from UK Biobank. A General-, an EOPC- and an LOPC-PRS were derived from age-specific genome-wide association studies. Weighted Cox proportional hazard models were applied to estimate the risk of PCa associated with PRSs. The discriminatory capability of PRSs were validated using time-dependent receiver operating characteristic (ROC) curves with additional 4238 males from PLCO and TCGA. Phenome-wide association studies underlying Mendelian Randomization were conducted to discover EOPC linking phenotypes. RESULTS: The 269-PRS calculated via well-established risk variants was more strongly associated with risk of EOPC [hazard ratio (HR) = 2.35, 95% confidence interval (CI) 1.99-2.78] than LOPC (HR = 1.95, 95% CI 1.89-2.01; I2 = 79%). EOPC-PRS was dramatically related to EOPC risk (HR = 4.70, 95% CI 3.98-5.54) but not to LOPC (HR = 0.98, 95% CI 0.96-1.01), while LOPC-PRS had similar risk estimates for EOPC and LOPC (I2 = 0%). Particularly, EOPC-PRS performed optimal discriminatory capability for EOPC (area under the ROC = 0.613). Among the phenomic factors to PCa deposited in the platform of ProAP (Prostate cancer Age-based PheWAS; https://mulongdu.shinyapps.io/proap ), EOPC was preferentially associated with PCa family history while LOPC was prone to environmental and lifestyles exposures. CONCLUSIONS: This study comprehensively profiled the distinct genetic and phenotypic architecture of EOPC. The EOPC-PRS may optimize risk estimate of PCa in young males, particularly those without family history, thus providing guidance for precision population stratification.
Assuntos
Estratificação de Risco Genético , Neoplasias da Próstata , Humanos , Masculino , Estudo de Associação Genômica Ampla , Estudos de Coortes , Fatores de Risco , Predisposição Genética para DoençaRESUMO
Arboviruses are etiological agents of various severe human diseases that place a tremendous burden on global public health and the economy; compounding this issue is the fact that effective prophylactics and therapeutics are lacking for most arboviruses. Herein, we identified 2 bacterial lipases secreted by a Chromobacterium bacterium isolated from Aedes aegypti midgut, Chromobacterium antiviral effector-1 (CbAE-1) and CbAE-2, with broad-spectrum virucidal activity against mosquito-borne viruses, such as dengue virus (DENV), Zika virus (ZIKV), Japanese encephalitis virus (JEV), yellow fever virus (YFV) and Sindbis virus (SINV). The CbAEs potently blocked viral infection in the extracellular milieu through their lipase activity. Mechanistic studies showed that this lipase activity directly disrupted the viral envelope structure, thus inactivating infectivity. A mutation in the lipase motif of CbAE-1 fully abrogated the virucidal ability. Furthermore, CbAEs also exert lipase-dependent entomopathogenic activity in mosquitoes. The anti-arboviral and entomopathogenic properties of CbAEs render them potential candidates for the development of novel transmission control strategies against vector-borne diseases.
Assuntos
Aedes , Arbovírus , Vírus da Dengue , Infecção por Zika virus , Zika virus , Animais , Arbovírus/genética , Humanos , Lipase , Mosquitos VetoresRESUMO
Portal vein thrombosis (PVT) is commonly encountered in patients with cirrhosis, challenging our understanding of its development, particularly the ambiguous contribution of inflammation. This study utilized Mendelian randomization (MR) to explore the causal impact of circulating inflammatory markers on PVT.Employing a two-sample MR framework, we merged genome-wide association study (GWAS) meta-analysis findings of 91 inflammation-associated proteins with independent PVT data from the FinnGen consortium's R10 release. A replication analysis was performed using a distinct GWAS dataset from the UK Biobank. Inverse variance weighting, MR-Egger regression, weighted median estimator, and Mendelian Randomization Pleiotropy RESidual Sum and Outlier were used for analysis, supplemented by multivariable MR (MVMR) to adjust for cirrhosis effects.Findings indicate a significant inverse association between the genetically inferred concentration of eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) and PVT risk, evidenced by an odds ratio (OR) of 0.37 (95% confidence interval [CI]: 0.21-0.67; p = 9.2 × 10-4; adjusted for multiple testing p = 0.084). This association was corroborated in the replication phase (OR = 0.39, 95% CI: 0.17-0.93; p = 0.03) and through MVMR analysis (OR = 0.34, 95% CI: 0.15-0.79; p = 0.012). Sensitivity analyses disclosed no evidence of heterogeneity or pleiotropy.Our investigation emphasizes the 4E-BP1 as a protective factor against PVT, underscoring its potential relevance in understanding PVT pathogenesis and its implications for diagnosis and therapy.
RESUMO
This work presents a theoretical design and experimental demonstration of a transmissive microwave metasurface for generating dual-vector vortex beams (VVBs). The proposed metasurface consists of an array of pixelated dartboard discretization meta-atoms. By rotating the meta-atoms from 0° to 180°, a Pancharatnam-Barry (P-B) phase covering the full 360° range is achieved, with a transmittance exceeding 90% over the frequency range from 9.7 to 10.2â GHz. The measured results demonstrate that when a linearly polarized microwave normally impinges on the metasurface, the transmitted beams correspond to the dual VVBs with different directions. A good agreement among Poincaré sphere theory, full-wave simulation, and experimental measurement is observed. This proposed transmissive microwave metasurface for VVBs may offer promising applications in communications and radar detection.
RESUMO
Frequent turnover of dengue virus (DENV) clades is one of the major forces driving DENV persistence and prevalence. In this study, we assess the fitness advantage of nine stable substitutions within the envelope (E) protein of DENV serotypes. Two tandem neighboring substitutions, threonine to lysine at the 226th (T226K) and glycine to glutamic acid at the 228th (G228E) residues in the DENV2 Asian I genotype, enhance virus infectivity in either mosquitoes or mammalian hosts, thereby promoting clades turnover and dengue epidemics. Mechanistic studies indicate that the substitution-mediated polarity changes in these two residues increase the binding affinity of E for host C-type lectins. Accordingly, we predict that a G228E substitution could potentially result in a forthcoming epidemic of the DENV2 Cosmopolitan genotype. Investigations into the substitutions associated with DENV fitness in hosts may offer mechanistic insights into dengue prevalence, thus providing a warning of potential epidemics in the future.