Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 855
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 116(4): 1018-1029, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37310261

RESUMO

Horticultural plants contribute immensely to the quality of human's life. The rapid development of omics studies on horticultural plants has resulted in large volumes of valuable growth- and development-related data. Genes that are essential for growth and development are highly conserved in evolution. Cross-species data mining reduces the impact of species heterogeneity and has been extensively used for conserved gene identification. Owing to the lack of a comprehensive database for cross-species data mining using multi-omics data from all horticultural plant species, the current resources in this field are far from satisfactory. Here, we introduce GERDH (https://dphdatabase.com), a database platform for cross-species data mining among horticultural plants, based on 12 961 uniformly processed publicly available omics libraries from more than 150 horticultural plant accessions, including fruits, vegetables and ornamental plants. Important and conserved genes that are essential for a specific biological process can be obtained by cross-species analysis module with interactive web-based data analysis and visualization. Moreover, GERDH is equipped with seven online analysis tools, including gene expression, in-species analysis, epigenetic regulation, gene co-expression, enrichment/pathway and phylogenetic analysis. By interactive cross-species analysis, we identified key genes contributing to postharvest storage. By gene expression analysis, we explored new functions of CmEIN3 in flower development, which was validated by transgenic chrysanthemum analysis. We believe that GERDH will be a useful resource for key gene identification and will allow for omics big data to be more available and accessible to horticultural plant community members.


Assuntos
Epigênese Genética , Multiômica , Humanos , Filogenia , Produtos Agrícolas/genética , Bases de Dados Genéticas , Mineração de Dados
2.
Plant J ; 116(6): 1652-1666, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37696505

RESUMO

TEMPRANILLO1 (TEM1) is a transcription factor belonging to related to ABI3 and VP1 family, which is also known as ethylene response DNA-binding factor 1 and functions as a repressor of flowering in Arabidopsis. Here, a putative homolog of AtTEM1 was isolated and characterized from chrysanthemum, designated as CmTEM1. Exogenous application of ethephon leads to an upregulation in the expression of CmTEM1. Knockdown of CmTEM1 promotes floral initiation, while overexpression of CmTEM1 retards floral transition. Further phenotypic observations suggested that CmTEM1 involves in the ethylene-mediated inhibition of flowering. Transcriptomic analysis established that expression of the flowering integrator CmAFL1, a member of the APETALA1/FRUITFULL subfamily, was downregulated significantly in CmTEM1-overexpressing transgenic plants compared with wild-type plants but was verified to be upregulated in amiR-CmTEM1 lines by quantitative RT-PCR. In addition, CmTEM1 is capable of binding to the promoter of the CmAFL1 gene to inhibit its transcription. Moreover, the genetic evidence supported the notion that CmTEM1 partially inhibits floral transition by targeting CmAFL1. In conclusion, these findings demonstrate that CmTEM1 acts as a regulator of ethylene-mediated delayed flowering in chrysanthemum, partly through its interaction with CmAFL1.


Assuntos
Chrysanthemum , Proteínas de Plantas , Fatores de Transcrição , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Chrysanthemum/fisiologia , Etilenos/metabolismo , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Plantas/metabolismo
3.
Small ; 20(38): e2402523, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38747010

RESUMO

A 44.610.8 topology hybrid ultramicroporous material (HUM), {[Cu1.5F(SiF6)(L)2.5]·G}n, (L = 4,4'-bisimidazolylbiphenyl, G = guest molecules), 1, formed by cross-linking interpenetrated 3D four-connected CdSO4-type nets with hexafluorosilicate anions is synthesized and evaluated in the context of gas sorption and separation herein. 1 is the first HUM functionalized with two different types of fluorinated sites (SiF6 2- and F- anions) lining along the pore surface. The optimal pore size (≈5 Å) combining mixed and high-density electronegative fluorinated sites enable 1 to preferentially adsorb C2H2 over CO2 and C2H4 by hydrogen bonding interactions with a high C2H2 isosteric heat of adsorption (Qst) of ≈42.3 kJ mol-1 at zero loading. The pronounced discriminatory sorption behaviors lead to excellent separation performance for C2H2/CO2 and C2H2/C2H4 that surpasses many well-known sorbents. Dynamic breakthrough experiments are conducted to confirm the practical separation capability of 1, which reveal an impressive separation factor of 6.1 for equimolar C2H2/CO2 mixture. Furthermore, molecular simulation and density functional theory (DFT) calculations validate the strong binding of C2H2 stems from the chelating fix of C2H2 between SiF6 2- anion and coordinated F- anion.

4.
Plant Physiol ; 193(4): 2413-2429, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37647542

RESUMO

Plant flowering time is induced by environmental and endogenous signals perceived by the plant. The MCM1-AGAMOUSDEFICIENS-Serum Response Factor-box (MADS-box) protein SHORT VEGETATIVE PHASE (SVP) is a pivotal repressor that negatively regulates the floral transition during the vegetative phase; however, the transcriptional regulatory mechanism remains poorly understood. Here, we report that CmSVP, a chrysanthemum (Chrysanthemum morifolium Ramat.) homolog of SVP, can repress the expression of a key flowering gene, a chrysanthemum FLOWERING LOCUS T-like gene (CmFTL3), by binding its promoter CArG element to delay flowering in the ambient temperature pathway in chrysanthemum. Protein-protein interaction assays identified an interaction between CmSVP and CmTPL1-2, a chrysanthemum homologue of TOPLESS (TPL) that plays critical roles as transcriptional corepressor in many aspects of plant life. Genetic analyses revealed the CmSVP-CmTPL1-2 transcriptional complex is a prerequisite for CmSVP to act as a floral repressor. Furthermore, overexpression of CmSVP rescued the phenotype of the svp-31 mutant in Arabidopsis (Arabidopsis thaliana), overexpression of AtSVP or CmSVP in the Arabidopsis dominant-negative mutation tpl-1 led to ineffective late flowering, and AtSVP interacted with AtTPL, confirming the conserved function of SVP in chrysanthemum and Arabidopsis. We have validated a conserved machinery wherein SVP partially relies on TPL to inhibit flowering via a thermosensory pathway.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Chrysanthemum , Arabidopsis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas Correpressoras/genética , Chrysanthemum/genética , Chrysanthemum/metabolismo , Flores/fisiologia , Regulação da Expressão Gênica de Plantas
5.
Plant Physiol ; 191(3): 1492-1504, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36546733

RESUMO

Deciduous woody plants like poplar (Populus spp.) have seasonal bud dormancy. It has been challenging to simultaneously delay the onset of bud dormancy in the fall and advance bud break in the spring, as bud dormancy, and bud break were thought to be controlled by different genetic factors. Here, we demonstrate that heterologous expression of the REVEILLE1 gene (named AaRVE1) from Agave (Agave americana) not only delays the onset of bud dormancy but also accelerates bud break in poplar in field trials. AaRVE1 heterologous expression increases poplar biomass yield by 166% in the greenhouse. Furthermore, we reveal that heterologous expression of AaRVE1 increases cytokinin contents, represses multiple dormancy-related genes, and up-regulates bud break-related genes, and that AaRVE1 functions as a transcriptional repressor and regulates the activity of the DORMANCY-ASSOCIATED PROTEIN 1 (DRM1) promoter. Our findings demonstrate that AaRVE1 appears to function as a regulator of bud dormancy and bud break, which has important implications for extending the growing season of deciduous trees in frost-free temperate and subtropical regions to increase crop yield.


Assuntos
Agave , Populus , Proteínas de Plantas/metabolismo , Populus/metabolismo , Estações do Ano , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Plant Cell Environ ; 47(8): 2923-2935, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38629334

RESUMO

Floral transition, the switch from vegetative to reproductive growth, is extremely important for the growth and development of flowering plants. In the summer chrysanthemum, CmBBX8, a member of the subgroup II B-box (BBX) family, positively regulates the transition by physically interacting with CmERF3 to inhibit CmFTL1 expression. In this study, we show that CmBBX5, a B-box subgroup I member comprising two B-boxes and a CCT domain, interacts with CmBBX8. This interaction suppresses the recruitment of CmBBX8 to the CmFTL1 locus without affecting its transcriptional activation activity. CmBBX5 overexpression led to delayed flowering under both LD (long-day) and SD (short-day) conditions, while lines expressing the chimeric repressor gene-silencing (CmBBX5-SRDX) exhibited the opposite phenotype. Subsequent genetic evidence indicated that in regulating flowering, CmBBX5 is partially dependent on CmBBX8. Moreover, during the vegetative growth period, levels of CmBBX5 expression were found to exceed those of CmBBX8. Collectively, our findings indicate that both CmERF3 and CmBBX5 interact with CmBBX8 to dampen the regulation of CmFTL1 via distinct mechanisms, which contribute to preventing the premature flowering of summer chrysanthemum.


Assuntos
Chrysanthemum , Flores , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Chrysanthemum/genética , Chrysanthemum/crescimento & desenvolvimento , Chrysanthemum/metabolismo , Chrysanthemum/fisiologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Flores/crescimento & desenvolvimento , Flores/genética , Flores/metabolismo , Plantas Geneticamente Modificadas , Reprodução , Fotoperíodo
7.
Opt Express ; 32(1): 260-274, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38175054

RESUMO

We propose a theoretical project in which quantum squeezing induces quantum entanglement and Einstein-Podolsky-Rosen steering in a coupled whispering-gallery-mode optomechanical system. Through pumping the χ(2)-nonlinear resonator with the phase matching condition, the generated squeezed resonator mode and the mechanical mode of the optomechanical resonator can generate strong quantum entanglement and EPR steering, where the squeezing of the nonlinear resonator plays the vital role. The transitions from zero entanglement to strong entanglement and one-way steering to two-way steering can be realized by adjusting the system parameters appropriately. The photon-photon entanglement and steering between the two resonators can also be obtained by deducing the amplitude of the driving laser. Our project does not need an extraordinarily squeezed field, and it is convenient to manipulate and provides a novel and flexible avenue for diverse applications in quantum technology dependent on both optomechanical and photon-photon entanglement and steering.

8.
Opt Lett ; 49(7): 1640-1643, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38560825

RESUMO

The development of super-oscillatory lens (SOL) offers opportunities to realize far-field label-free super-resolution microscopy. Most microscopes based on a high numerical aperture (NA) SOL operate in the point-by-point scanning mode, resulting in a slow imaging speed. Here, we propose a high-NA metalens operating in the single-shot wide-field mode to achieve real-time super-resolution imaging. An optimization model based on the exhaustion algorithm and angular spectrum (AS) theory is developed for metalens design. We numerically demonstrate that the optimized metalens with an NA of 0.8 realizes the imaging resolution (imaging pixel size) about 0.85 times the Rayleigh criterion. The metalens can achieve super-resolution imaging of an object with over 200 pixels, which is one order of magnitude higher than the unoptimized metalens. Our method provides an avenue toward single-shot far-field label-free super-resolution imaging for applications such as real-time imaging of living cells and temporally moving particles.

9.
Opt Lett ; 49(17): 4926-4929, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39207999

RESUMO

In recent years, due to the increasing requirement for real-time and massive data processing, optical analog computation has arisen as a promising alternative to digital computation. Optical spatial differentiation plays a fundamentally important role in various emerging technologies, including augmented reality, autonomous driving, and object recognition. However, previous demonstrations encountered several limitations, such as the dependence on polarization states and a typically limited numerical aperture (NA) of about 0.5, especially in the transmission mode. Here, a new, to our knowledge, design strategy based on the evolution between impedance matching and mismatching in a metasurface is proposed to fill this gap, which can perform dual-polarized second-order derivative for image processing. Our scheme enables high transmission under dual polarization over an 85° incident angle range (NA = 0.996), resulting in more than twofold spatial resolution. Our work paves the way for polarization-insensitive high-resolution signal and image processing in the terahertz region.

10.
Phys Rev Lett ; 132(17): 177001, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38728709

RESUMO

Asymmetric transmission in a passive vortex system is highly desirable, as it enables the development of compact vortex-based devices. However, breaking the mirror symmetry of transmission via a single metasurface poses challenges due to the inherent symmetric transmission properties in reciprocity. Here, we theoretically propose and experimentally demonstrate a novel transmission-reflection phase coupling mechanism to achieve the broken mirror symmetry of sound vortex transmission. This mechanism establishes a special coupling link between transmission and reflection waves, superimposing asymmetric reflection phases on the transmission phases. By utilizing a single passive phase gradient metasurface with asymmetric reflection phase twists, distinct transmission phase twists for mirror-symmetric incident vortices can be achieved within a cylindrical waveguide. This is typically difficult to imple-ment in a reciprocal system. Numerical and experimental results both demonstrate the broken mirror symmetry of vortex transmission and reflection. Our findings offer a new strategy for controlling vortex wave propagation, which may inspire new directional applications and extend to the field of photonics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA