Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Small ; 18(14): e2107570, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35187806

RESUMO

Ligand-induced chirality in transition-metal oxide (TMO) nanostructures have great potential for designing materials with tunable chiroptical effects. Herein, a facile strategy is reported to prepare chiroptical active nickel-oxide hybrids combined with pH adjustment, and the redox treatment results in ligand transformation, which is attributable to multiple optical transitions in the TMO nanostructures. The theoretical calculation also explains the chiral origins based on their complex models based on empirical analysis. It is also shown that enantiomeric TMO nanoparticles can be used as chiral inducers for chiroptical sensitive polymerization. These results demonstrate that TMO nanostructures can provide rational control over photochemical synthesis and chiral transfer of inorganics nanoarchitecture chirality.


Assuntos
Nanopartículas Metálicas , Níquel , Ligantes , Nanopartículas Metálicas/química , Óxidos , Estereoisomerismo
2.
Angew Chem Int Ed Engl ; 60(15): 8441-8445, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33481292

RESUMO

Hybrid organic-inorganic metal halides have emerged as highly promising materials for a wide range of applications in optoelectronics. Incorporating chiral organic molecules into metal halides enables the extension of their unique optical and electronic properties to chiral optics. By using chiral (R)- or (S)-methylbenzylamine (R-/S-MBA) as the organic component, we synthesized chiral hybrid copper halides, (R-/S-MBA)2 CuCl4 , and investigated their optical activity. Thin films of this material showed a record anisotropic g-factor as high as approximately 0.06. We discuss the origin of the giant optical activity observed in (R-/S-MBA)2 CuCl4 by theoretical modeling based on density functional theory (DFT) and demonstrate highly efficient second harmonic generation (SHG) in these samples. Our study provides insight into the design of chiral materials by structural engineering, creating a new platform for chiral and nonlinear photonic device applications of the chiral hybrid copper halides.

3.
Opt Lett ; 44(15): 3873-3876, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31368990

RESUMO

CsPbBr2.7I0.3 two-dimensional (2D) nanoplatelets (NPs) with emission wavelengths of 469 nm and 527 nm were synthesized and characterized. Femtosecond transient absorption spectra revealed hot carrier cooling times of ∼368 fs and ∼438 fs for 469 nm and 527 nm 2D NPs, respectively. Importantly, the 2D NPs exhibit giant two-, three-, four-, and five-photon absorption cross-sections, reaching ∼4.1×106 GM at 830 nm, ∼2.3×10-74 cm6 s2 photon-2 at 1300 nm, 2.06×10-104 cm8 s3 photon-3 at 1600 nm, and 1.50×10-136 cm10 s4 photon-4 at 2200 nm, respectively, which are 3-8 orders of magnitude larger, compared to specially designed organic molecules.

4.
Opt Lett ; 44(9): 2256-2259, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31042197

RESUMO

Cysteine-capped cadmium selenide/cadmium sulfide (CdSe/CdS) dot/rod nanocrystals (NCs) were synthesized and then doped in poly(vinyl alcohol) (PVA) films. Compared with an L-/D-cysteine-capped NC solution (10-4), the anisotropic factors of the circular dichroism and circular polarized luminescence in the doped PVA films increased by one order of magnitude, probably because of the enhanced anisotropy degree, crystal orientations, and ordered morphologies. The two- and three-photon absorption coefficients of the doped PVA films were determined as 0.58 cm/GW at 800 nm and 2.3×10-4 cm3/GW2 at 1300 nm, respectively. The chiral NC-doped PVA films are promising for applications in chirality-related nonlinear photonic devices.

5.
Chemistry ; 24(27): 6917-6921, 2018 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-29534315

RESUMO

Original titania nanocages are fabricated from sacrificial silica/polystyrene tetrapod-like templates. Here the template synthesis, titania deposition and nanocage development through polystyrene dissolution and subsequent silica etching are described. Discussion about the competitive deposition of titania on the biphasic templates is particularly emphasized. The morphology of the nanocages is investigated by TEM, STEM, EDX mapping and electron tomography.

6.
Angew Chem Int Ed Engl ; 57(32): 10236-10240, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-29943501

RESUMO

Understanding the interactions between a semiconducting nanocrystal surface and chiral anchoring molecules could resolve the mechanism of chirality induction in nanoscale and facilitate the rational design of chiral semiconducting materials for chiroptics. Now, chiral molybdenum oxide nanoparticles are presented in which chirality is transferred via a bio-to-nano approach. With facile control of the amount of chiral cysteine molecules under redox treatment, circular dichroism (CD) signals are generated in the plasmon region and metal-ligand charge-transfer band. The obtained enhanced CD signals with tunable lineshapes illustrate the possibility of using chiral molybdenum oxide nanoparticles as potentials for chiral semiconductor nanosensors, optoelectronics, and photocatalysts.

8.
Anal Chim Acta ; 1293: 342271, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331555

RESUMO

BACKGROUND: Recently, the enzymatic cascade reactions during the cellular process are widely used for fabricating robust biosensors and they have attracted extensive attention in analyzing various clinical biomarkers. The enzymatic cascades analysis is commonly based on the peroxidase (POD)/oxidase coupled system. However, the requirement of harsh acidic environment, poor stability and interference from the oxidase further limit their analytical practicability. Herein, novel chromogenic nanomaterials with H2O2 sensitive features are urgently required to replace the POD nanozyme in enzymatic cascades based bioanalysis. RESULTS: Herein, oxygen deficient MoO3-x with H2O2 sensitive features and near-infrared (NIR) absorption band have been ultra-fast synthesized and utilized for the enzymatic cascades analysis of α-Glucosidase's activity, and inhibitors screening. With the addition of 4-nitrophenyl-α-d-glucopyranoside, the simultaneous presence of α-Glucosidase and glucose oxidase (GOx) would fade their dark blue color and decrease the NIR absorption. The α-Glucosidase's activity can be analyzed by the absorption at 770 nm, and their limit of detection is 8 × 10-5 U/mL, indicating the superior performance of the proposed colorimetric assay. Moreover, this proposed α-Glucosidase assay is further utilized for inhibitors screening. Moreover, the activity of α-Glucosidase can also be analyzed by the smartphone and microplate reader through the agarose-based colorimetric portable kit. SIGNIFICANCE: This MoO3-x involved enzymatic cascades assay would facilitate for the development of bio-analysis related to H2O2 generation or consumption. Moreover, this bio-analysis strategy will contribute to the development of other H2O2 sensitive chromogenic nanomaterials for the analysis of certain biomolecules and biological enzymes.


Assuntos
Nanoestruturas , alfa-Glucosidases , Peróxido de Hidrogênio/análise , Peroxidases , Peroxidase , Corantes , Oxigênio , Colorimetria
9.
Chem Commun (Camb) ; 59(16): 2311-2314, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36748302

RESUMO

Water-soluble Ag-doped InP/ZnS quantum dots (QDs) with high photoluminescence quantum yield were synthesized and characterized. Their maximum two- and three-photon absorption cross sections are determined as ∼1.7 × 104 GM at 820 nm and ∼1.7 × 10-76 cm6 s2 photon-2 at 1260 nm. Importantly, for the first time, we demonstrated that Ag-doped InP/ZnS QDs can be used for type-I photodynamic therapy and are more suitable for the hypoxic environment of tumors.

10.
Artigo em Inglês | MEDLINE | ID: mdl-37047963

RESUMO

It is very important to understand the heat transfer process between storage tanks in a tank farm under a fire scenario, which is one of the key factors in determining the consequences of accident development. In this paper, a CFD simulation is used to study the heat transfer process and emergency protection of tanks under a fire scenario. The simulated results show that the changes in wind speed can affect the heat transfer of the tank farm. The highest temperature of the tanks at 5.3 m/s (wind speed) is 1432 K, while the highest temperature at 17.1 m/s (wind speed) is 1556 K. At the same time, the changes in wind direction can also affect the heat transfer of the tank farm. For the 45° east by north (wind direction), almost all tanks in the tank farm are affected by the fire. When the water curtain was applied as an emergency protection measure, the simulated highest temperature of the tanks decreased to 779 K (the cooling water intensity 6 L/min·m2), while the highest temperature of the tanks was 1432 K without water curtain protection under the actual fire conditions. The simulated highest temperature of the tanks decreased to 671 K when the emergency thermal insulation coating was sprayed on the surface of the tanks, which can effectively protect the adjacent tanks from being destroyed.


Assuntos
Temperatura Alta , Vento , Fazendas , Simulação por Computador , Água
11.
Nanoscale ; 14(41): 15414-15421, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36218542

RESUMO

Chiral transition metal oxides (TMOs) are widely used in various optoelectronic devices. However, the currently poor understanding of how the optical activities of TMOs can be regulated considerably hinders their applications. We have synthesized a series of chiral TMO nanoparticles (NPs), i.e., MoOx (x = 2, 2.4 and 2.5) and Co3O4. Compared with TMO NPs with L-/D-cysteine molecules as the capping ligand, L-/D-histidine-capped TMO NPs possess larger anisotropic factors (gabs), which are as high as ∼0.01 and ∼0.02 for L-/D-histidine-capped MoO2.5 and Co3O4 NPs, respectively. A nondegenerate coupled oscillator (NDCO) theoretical calculation confirms that L-/D-histidine molecules can generate a smaller electric dipole moment and thus induce higher optical activity than L-/D-cysteine molecules. Impressively, the chiral NPs exhibit broadband second harmonic generation. This work indicates that chiral TMO NPs have potential for application in nonlinear optical devices.

12.
ACS Nano ; 16(1): 1600-1611, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34978184

RESUMO

The scaling laws have long been used as evidence of science where many fundamental physics laws emerge. As emerging nanomaterials, quantum dots are also sensitive to scaling because of their strong size effect. In this work, we developed the chiral dielectric theory based on the exciton absorption mechanism to explain the increment of the dielectric constant from chirality via its dimensionality. To help researchers discover and develop scaling relevant theories, the Authentic Intelligent Machine (AIM) protocol was developed to generate and interpret experimental data in an analytical and scaling-oriented manner. We show how the AIM protocol interprets spectra such as transient absorption data of chiral quantum dots with theories, where discrepancies concerning the dielectric constant were discovered. Examples for applying the AIM protocol on other spectra, such as absorption spectra and photoluminescence spectra, are also given.

13.
J Phys Chem Lett ; 13(50): 11669-11677, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36511504

RESUMO

Chiral tellurium nanoparticles have recently garnered tremendous attention as emerging inorganic nanomaterials with intrinsically chiral space groups owing to their potential in next-generation stereosynthesis, spintronics, and optoelectronics. Inspired by the chiral ligand-mediated synthetic strategy, we herein present hydrothermal-assisted synthesis of chiral polyhedral tellurium nanoparticles that provides differed chirogenesis than that of particles fabricated by wet chemistry in recent studies; the thiolated cysteine molecules change the morphology of tellurium nanoparticles from fundamental two-dimensional shapes to chiral three-dimensional polyhedra owing to the screw dislocation effects observed only during nanoparticle growth. However, the nanoparticles do not exhibit chiral behaviors at the nucleation stage. Further investigation indicates that the growth of chiral polyhedral tellurium nanoparticles is overwhelmingly affected by parameters such as the hydrothermal reaction time, amount of polyvinylpyrrolidone, and species of chiral molecules. We believe that these findings can provide new insights into the fundamental relationships among structural chirality, chiral ligands, screw dislocations, and chiral space groups in principle.

14.
Toxics ; 11(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36668752

RESUMO

Using styrene as a proxy for VOCs, a new method was developed to remove styrene gas in nitrogen atmospheres. The effect on the styrene removal efficiency was explored by varying parameters within the continuum dynamic experimental setup, such as ferrous ion concentration, hydrogen peroxide concentration, and pH values. The by-products are quantized by a TOC analyzer. The optimal process conditions were hydrogen peroxide at 20 mmol/L, ferrous ions at 0.3 mmol/L and pH 3, resulting in an average styrene removal efficiency of 96.23%. In addition, in this study, we construct a BAS-BP neural network model with experimental data as a sample training set, which boosts the goodness-of-fit of the BP neural network and is able to tentatively predict styrene gas residuals for different front-end conditions.

15.
Theranostics ; 11(19): 9262-9295, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34646370

RESUMO

The rapid development of chiral inorganic nanostructures has greatly expanded from intrinsically chiral nanoparticles to more sophisticated assemblies made by organics, metals, semiconductors, and their hybrids. Among them, lots of studies concerning on hybrid complex of chiral molecules with achiral nanoparticles (NPs) and superstructures with chiral configurations were accordingly conducted due to the great advances such as highly enhanced biocompatibility with low cytotoxicity and enhanced penetration and retention capability, programmable surface functionality with engineerable building blocks, and more importantly tunable chirality in a controlled manner, leading to revolutionary designs of new biomaterials for synergistic cancer therapy, control of enantiomeric enzymatic reactions, integration of metabolism and pathology via bio-to nano or structural chirality. Herein, in this review our objective is to emphasize current research state and clinical applications of chiral nanomaterials in biological systems with special attentions to chiral metal- or semiconductor-based nanostructures in terms of the basic synthesis, related circular dichroism effects at optical frequencies, mechanisms of induced optical chirality and their performances in biomedical applications such as phototherapy, bio-imaging, neurodegenerative diseases, gene editing, cellular activity and sensing of biomarkers so as to provide insights into this fascinating field for peer researchers.


Assuntos
Dicroísmo Circular/métodos , Nanoestruturas/química , Nanotecnologia/tendências , Materiais Biocompatíveis/química , Técnicas de Química Sintética/métodos , Humanos , Metais , Nanopartículas/química , Nanotecnologia/métodos , Fototerapia , Estereoisomerismo
16.
Polymers (Basel) ; 12(2)2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32033455

RESUMO

In order to reduce the fire risk of rigid polyurethane foams (RPUF), three kinds of zeolitic imidazolate frameworks (ZIFs) were prepared. The results of Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM and X-ray diffraction (XRD) showed that ZIFs were successfully prepared. The combustion test results showed that the heat and smoke production of the composite containing ZIFs was obviously reduced. In particular, the peak heat release rate (PHRR) of ZIF-8/RPUF decreased from 740.85 kW/m2 (Ref. RPUF) to 489.56 kW/m2, while the PHRR of ZIF-7/RPUF and ZIF-11/RPUF is 598.39 and 583.36 kW/m2, respectively. The addition of ZIFs improved the thermostability of the composite. The T50% of ZIF-8/RPUF, ZIF-7/RPUF and ZIF-11/RPUF increased to 364, 382 and 380 °C, respectively. The maximum light absorption of ZIF-7/RPUF and ZIF-11/RPUF was about 88%, which is higher than that of ZIF-8/RPUF (75%). The results of Raman spectroscopy showed that the ID/IG value of Ref. RPUF is 2.96, while the ID/IG value of ZIFs/RPUF reduces to less than 2.80. The main mechanism of ZIFs for reducing the fire risk of RPUF was the catalysis and incarbonization of ZIFs during combustion based on the results of thermogravimetric analysis and Raman spectroscopy of char residue.

17.
Nanoscale ; 12(29): 15560-15576, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32692791

RESUMO

All-inorganic lead halides, including CsPbX3 (X = Cl, Br, I), have become important candidate materials in the field of optoelectronics. However, the inherent toxicity of metal lead and poor material stability have hindered further applications of traditional metal halides, CsPbX3. Therefore, copper(i)-based ternary metal halides are expected to become promising substitutes for traditional metal halides because of their nontoxicity, excellent optical properties and good stability under ambient conditions. This article reviews the recent development of all-inorganic low-dimensional copper(i)-based ternary metal halides by introducing their various synthesis methods, crystal structures, properties and their optoelectronic applications. In addition, the prospects for future challenges and the potential significance of copper(i)-based ternary metal halides in optoelectronic fields are presented.

18.
J Phys Chem Lett ; 11(17): 7232-7238, 2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32787235

RESUMO

The synthesis of CdSe/CdS core/shell nanoparticles was revisited with the help of a causal inference machine learning framework. The tadpole morphology with 1-2 tails was experimentally discovered. The causal inference model revealed the causality between the oleic acid (OA), octadecylphosphonic acid (ODPA) ligands, and the detailed tail shape of the tadpole morphology. Further, with the identified causality, a neural network was provided to predict and directly lead to the original experimental discovery of new tadpole-shaped structures. An entropy-driven nucleation theory was developed to understand both the ligand and temperature dependent experimental data and the causal inference from the machine learning framework. This work provided a vivid example of how the artificial intelligence technology, including machine learning, could benefit the materials science research for the discovery.

19.
Adv Mater ; 32(41): e1905585, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32743887

RESUMO

Transition metal oxides (TMOs) consist of a series of solid materials, exhibiting a wide variety of structures with tunability and versatile physicochemical properties. Such a statement is undeniably true for chiral TMOs since the introduction of chirality brings in not only active optical activities but also geometrical anisotropy due to the symmetry-breaking effect. Although progressive investigations have been made for accurately controlled synthesis and relevant explanations on the chirality origin of such materials, the overall field of chiral TMOs is still in its infancy with adequate space for interdisciplinary communications and development. Herein, therefore, recent advances in both experimental phenomena and theoretical calculations in this area are reviewed, to elucidate the underlying chiral origin with respect to their fabrications process, triggering new insights for further evolution of this field.

20.
Adv Sci (Weinh) ; 7(20): 2001335, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33101857

RESUMO

Nanocarbon materials represent one of the hottest topics in physics, chemistry, and materials science. Preparation of nanocarbon materials by zeolite templates has been developing for more than 20 years. In recent years, novel structures and properties of zeolite-templated nanocarbons have been evolving and new applications are emerging in the realm of energy storage and conversion. Here, recent progress of zeolite-templated nanocarbons in advanced synthetic techniques, emerging properties, and novel applications is summarized: i) thanks to the diversity of zeolites, the structures of the corresponding nanocarbons are multitudinous; ii) by various synthetic techniques, novel properties of zeolite-templated nanocarbons can be achieved, such as hierarchical porosity, heteroatom doping, and nanoparticle loading capacity; iii) the applications of zeolite-templated nanocarbons are also evolving from traditional gas/vapor adsorption to advanced energy storage techniques including Li-ion batteries, Li-S batteries, fuel cells, metal-O2 batteries, etc. Finally, a perspective is provided to forecast the future development of zeolite-templated nanocarbon materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA