Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(3)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36985033

RESUMO

A sub 6 GHz dual-band closed-slot multiantenna system for 5G laptops is proposed in this paper. It was installed in a clearance space, with dimensions og 217 × 3 mm2 and 1 mm away from the upper edge of the screen ground plane. The dimensions of the clearance space were the same as those of a multisystem consisting of six antennas. The dimensions of the single closed-slot antenna were 32 × 3 mm2 (0.368 λ × 0.034 λ, where λ equals the free-space wavelength of 3450 MHz. The antenna was coupled to an asymmetric T-shaped feed-in section equipped with a chip capacitor for exciting one-half and full wavelength resonance modes of the closed-slot to encompass sub 6 GHz 3300-3600 MHz and 4800-5000 MHz dual-band operations. The design of the antenna features a long and straight slot to generate the high-order mode of the closed slot in the high-frequency (4800-5000 MHz) band (not the low-frequency (3300-3600 MHz) multiplier band). Its structure is simple, and the width of its slot is only 3 mm. The antennas were arranged to be 5 mm apart in the same direction and in parallel to form a six-antenna system in order to utilize the weak electric fields located at the two closed ends of the closed-slot structure when the closed slot was excited. It showed excellent envelope correlation coefficients (ECCs) and isolation performance without the installation of isolation elements. The measured fractional bandwidth of the antenna was 10.15% and 6.73% at the center frequencies of 3450 MHz and 4900 MHz, respectively. Its measured isolation was always over 10 dB, and the efficiency was between 46% and 76%. The ECCs of the system calculated from the measured complex E-field radiation pattern were all below 0.2, which means that it is ideal for use in laptop devices with a high screen-to-body ratio and a metal back cover.

2.
Micromachines (Basel) ; 14(7)2023 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-37512710

RESUMO

In this paper, a twelve-antenna system is designed for 5G smartphones with metal frames. The system is compact and operates on dual bands within the sub-6 GHz frequency range using multiple-input multiple-output (MIMO) technology. Two sets of six-antenna units are included in the system, arranged in a diagonal mirror-image configuration, and positioned at the center of the circuit board's longer edges. The profile height of each of the six-antenna units is only 3 mm, and the overall array dimensions are 105 × 3 × 3.1 mm3. A single antenna unit is 15 × 3 × 3.1 mm3 (0.173 λ × 0.035 λ × 0.036 λ, where λ equals the free-space wavelength of 3450 MHz). The arrangement of the antennas in the six-antenna units is parallel, with a 3 mm separation between adjacent antennas. The antenna structure comprises of an inverted L-shaped feed branch and two inverted L-shaped short-circuit branches integrated into part of the metal frame. The proposed array can form multiple resonance paths, achieving dual-band operation at 3300-3600 MHz and 4800-5000 MHz. The measured isolation of this twelve-antenna system within the operating frequency band is over 10 dB, and the measured antenna efficiency is greater than 36%. Therefore, the system is suitable for use in smartphones with high screen-to-body ratios and metal frames.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA