Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Metabolomics ; 15(11): 146, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31664624

RESUMO

INTRODUCTION: Endometrial cancer (EC) is one of the most common gynecologic neoplasms in developed countries but lacks screening biomarkers. OBJECTIVES: We aim to identify and validate metabolomic biomarkers in cervicovaginal fluid (CVF) for detecting EC through nuclear magnetic resonance (NMR) spectroscopy. METHODS: We screened 100 women with suspicion of EC and benign gynecological conditions, and randomized them into the training and independent testing datasets using a 5:1 study design. CVF samples were analyzed using a 600-MHz NMR spectrometer equipped with a cryoprobe. Four machine learning algorithms-support vector machine (SVM), partial least squares discriminant analysis (PLS-DA), random forest (RF), and logistic regression (LR), were applied to develop the model for identifying metabolomic biomarkers in cervicovaginal fluid for EC detection. RESULTS: A total of 54 women were eligible for the final analysis, with 21 EC and 33 non-EC. From 29 identified metabolites in cervicovaginal fluid samples, the top-ranking metabolites chosen through SVM, RF and PLS-DA which existed in independent metabolic pathways, i.e. phosphocholine, malate, and asparagine, were selected to build the prediction model. The SVM, PLS-DA, RF, and LR methods all yielded area under the curve values between 0.88 and 0.92 in the training dataset. In the testing dataset, the SVM and RF methods yielded the highest accuracy of 0.78 and the specificity of 0.75 and 0.80, respectively. CONCLUSION: Phosphocholine, asparagine, and malate from cervicovaginal fluid, which were identified and independently validated through models built using machine learning algorithms, are promising metabolomic biomarkers for the detection of EC using NMR spectroscopy.


Assuntos
Biomarcadores Tumorais/metabolismo , Líquidos Corporais/química , Neoplasias do Endométrio/diagnóstico , Metabolômica , Adulto , Idoso , Algoritmos , Biomarcadores Tumorais/análise , Líquidos Corporais/metabolismo , Neoplasias do Endométrio/metabolismo , Feminino , Humanos , Análise dos Mínimos Quadrados , Aprendizado de Máquina , Pessoa de Meia-Idade , Espectroscopia de Prótons por Ressonância Magnética , Máquina de Vetores de Suporte
3.
Biomedicines ; 11(11)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38002072

RESUMO

Esophageal cancer is a deadly disease, and neoadjuvant chemoradiotherapy can improve patient survival, particularly for patients achieving a pathological complete response (ypCR). However, existing imaging methods struggle to accurately predict ypCR. This study explores computer-aided detection methods, considering both imaging data and radiotherapy dose variations to enhance prediction accuracy. It involved patients with node-positive esophageal squamous cell carcinoma undergoing neoadjuvant chemoradiotherapy and surgery, with data collected from 2014 to 2017, randomly split into five subsets for 5-fold cross-validation. The algorithm DCRNet, an advanced version of OCRNet, integrates RT dose distribution into dose contextual representations (DCR), combining dose and pixel representation with ten soft regions. Among the 80 enrolled patients (mean age 55.68 years, primarily male, with stage III disease and middle-part lesions), the ypCR rate was 28.75%, showing no significant demographic or disease differences between the ypCR and non-ypCR groups. Among the three summarization methods, the maximum value across the CTV method produced the best results with an AUC of 0.928. The HRNetV2p model with DCR performed the best among the four backbone models tested, with an AUC of 0.928 (95% CI, 0.884-0.972) based on 5-fold cross-validation, showing significant improvement compared to other models. This underscores DCR-equipped models' superior AUC outcomes. The study highlights the potential of dose-guided deep learning in ypCR prediction, necessitating larger, multicenter studies to validate the results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA