Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant J ; 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39474903

RESUMO

The tea plant (Camellia sinensis) is a perennial green plant, and its tender leaves are rich in secondary metabolites, such as theanine. Ethylamine (EA), a small amine, is an important prerequisite for theanine synthesis. However, beyond its involvement in theanine synthesis, the other physiological functions of EA in tea plants remain unknown. In vitro experiments indicate that EA may function as scavengers of reactive oxygen species (ROS) to protect the plant against damage caused by osmotic stress. Additionally, a significant correlation between EA levels and osmotic tolerance has been observed in different tea varieties. From the results, alanine decarboxylase (CsAlaDC)-silenced tea leaves and overexpressed CsAlaDC Arabidopsis thaliana lines decreased and increased EA levels, respectively, and mediated ROS homeostasis, thus exhibiting a sensitive and tolerant phenotype. In addition, the transcription factor (TF) CsCBF4 was functionally identified, which can directly bind to the CsAlaDC promoter. CsCBF4-silenced tea leaves significantly reduced the expression levels of CsAlaDC and in turn EA content, resulting in excess ROS accumulation and an osmotic-sensitive phenotype. Taken together, these results established a new regulatory module consisting of CBF4-CsAlaDC responsible for EA accumulation and ROS homeostasis in response to osmotic stress.

2.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36768228

RESUMO

Cold stress is one of the major abiotic stresses limiting tea production. The planting of cold-resistant tea cultivars is one of the most effective measures to prevent chilling injury. However, the differences in cold resistance between tea cultivars remain unclear. In the present study, we perform a transcriptomic and metabolomic profiling of Camellia sinensis var. "Shuchazao" (cold-tolerant, SCZ) and C. sinensis var. assamica "Yinghong 9" (cold-sensitive, YH9) during cold acclimation and analyze the correlation between gene expression and metabolite biosynthesis. Our results show that there were 51 differentially accumulated metabolites only up-regulated in SCZ in cold-acclimation (CA) and de-acclimation (DA) stages, of which amino acids accounted for 18%. The accumulation of L-arginine and lysine in SCZ in the CA stage was higher than that in YH9. A comparative transcriptomic analysis showed an enrichment of the amino acid biosynthesis pathway in SCZ in the CA stage, especially "arginine biosynthesis" pathways. In combining transcriptomic and metabolomic analyses, it was found that genes and metabolites associated with amino acid biosynthesis were significantly enriched in the CA stage of SCZ compared to CA stage of YH9. Under cold stress, arginine may improve the cold resistance of tea plants by activating the polyamine synthesis pathway and CBF (C-repeat-binding factor)-COR (cold-regulated genes) regulation pathway. Our results show that amino acid biosynthesis may play a positive regulatory role in the cold resistance of tea plants and assist in understanding the cold resistance mechanism differences among tea varieties.


Assuntos
Camellia sinensis , Transcriptoma , Perfilação da Expressão Gênica , Camellia sinensis/metabolismo , Chá/genética , Chá/metabolismo , Aminoácidos/metabolismo , Arginina/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Int J Mol Sci ; 23(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36077359

RESUMO

Powdery mildew is a widespread disease in rapeseed due to a lack of resistant germplasm. We compared the foliar epidermal features and transcriptomic responses between the resistant (R) and susceptible (S) plants among the two parents and progenies of Brassica carinata × B. napus. The amount of cuticular wax and callose deposition on the R plants was much lower than that on the S plants; hence, these chemicals are not all essential to pre-penetration resistance, although the cuticular wax on the R plants had more needle-like crystals. A total of 1049 genes involved in various defense responses were expressed differentially among the R/S plants. The expression levels of two well-known susceptibility genes, MLO6 and MLO12, were much lower in the R plant, indicating an important role in PM resistance. A set of genes related to wax biosynthesis (KCS6, LACS2, CER and MAH1), cell wall modification (PMR5, PMEI9, RWA2, PDCB1 and C/VIF2), chloroplast function (Chlorophyllase-1, OEP161, PSBO1, CP29B and CSP41b), receptor kinase activity (ERECTA, BAK1, BAM2, LYM1, LYM3, RLK902, RLP11, ERL1 and ERL2), IPCS2, GF14 lambda, RPS4 and RPS6 were highly expressed in the R plants. In the S plants, most highly expressed genes were involved in later defense responses, including CERK1, LYK4, LIK1, NIMIN-1, CHITINASE 10, PECTINESTERASE, CYP81F2 and RBOHF and the genes involved in salicylic acid-dependent systemic acquired resistance and hypersensitive responses, indicating the occurrence of severe fungal infection. The results indicate that some uncertain pre-penetration defenses are pivotal for high resistance, while post-penetration defenses are more important for the S plant survival.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ascomicetos , Brassica , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ascomicetos/genética , Brassica/genética , Resistência à Doença/genética , Erysiphe , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases , Transcriptoma
4.
Polymers (Basel) ; 14(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35160408

RESUMO

Combined with the traditional internal mixing process, a custom-built ultrasonic generator was introduced in this study. The effect of ultrasonic parameters on the comprehensive performance of tread rubber formulations was investigated. Compared to the traditional mixing process without ultrasonic wave loading, the introduction of ultrasonic enhanced the dispersion and distribution of composite particles in the rubber matrix and improved the overall performance of rubber products. The devil's triangle relationship among the rolling resistance, wet skid resistance, and abrasion resistance of tires was improved. When the wet skid resistance was slightly lost, the rolling resistance and wear rate were effectively reduced. This study provides new insights into a strategy for optimizing the mixing process of the traditional internal mixer, reducing vehicle emissions, extending the service life of tires, and promoting the development of green tires.

5.
Front Plant Sci ; 11: 921, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849669

RESUMO

C-repeat (CRT)/dehydration responsive element (DRE)-binding factor CBFs, a small family of genes encoding transcriptional activators, play important roles in plant cold tolerance. In this study, a comprehensive genome-wide analysis was carried out to identify and characterize the functional dynamics of CsCBFs in tea plant (Camellia sinensis). A total of 6 CBF genes were obtained from the tea plant genome and named CBF1-6. All of the CsCBFs had an AP2/ERF DNA-binding domain and nuclear localization signal (NLS) sequence. CsCBF-eGFP fusion and DAPI staining analysis confirmed the nuclear localization of the CsCBFs. Transactivation assays showed that the CsCBFs, except CsCBF1, had transcriptional activity. CsCBF expression was differentially induced by cold, heat, PEG, salinity, ABA, GA, MeJA, and SA stresses. In particular, the CsCBF genes were significantly induced by cold treatments. To further characterize the functions of CsCBF genes, we overexpressed the CsCBF3 gene in Arabidopsis thaliana plants. The resulting transgenic plants showed increased cold tolerance compared with the wild-type Arabidopsis plant. The enhanced cold tolerance of the transgenic plants was potentially achieved through an ABA-independent pathway. This study will help to increase our understanding of CsCBF genes and their contributions to stress tolerance in tea plants.

6.
Polymers (Basel) ; 11(12)2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31835317

RESUMO

As the IV generation of packaging, biopolymers, with the advantages of biodegradability, process ability, combination possibilities and no pollution to food, have become the leading food packaging materials. Biopolymers can be directly extracted from biomass, synthesized from bioderived monomers and produced directly by microorganisms which are all abundant and renewable. The raw materials used to produce biopolymers are low-cost, some even coming from agrion dustrial waste. This review summarized the advances in protein-based films and coatings for food packaging. The materials studied to develop protein-based packaging films and coatings can be divided into two classes: plant proteins and animal proteins. Parts of proteins are referred in this review, including plant proteins i.e., gluten, soy proteins and zein, and animal proteins i.e., casein, whey and gelatin. Films and coatings based on these proteins have excellent gas barrier properties and satisfactory mechanical properties. However, the hydrophilicity of proteins makes the protein-based films present poor water barrier characteristics. The application of plasticizers and the corresponding post-treatments can make the properties of the protein-based films and coatings improved. The addition of active compounds into protein-based films can effectively inhibit or delay the growth of microorganisms and the oxidation of lipids. The review also summarized the research about the storage requirements of various foods that can provide corresponding guidance for the preparation of food packaging materials. Numerous application examples of protein-based films and coatings in food packaging also confirm their important role in food packaging materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA