RESUMO
During investigations of invertebrate-associated fungi in Yunnan Province of China, a new species, Sporodiniella sinensis sp. nov., was collected. Morphologically, S. sinensis is similar to Sporodiniella umbellata; however, it is distinguished from S. umbellata by its greater number of sporangiophore branches, longer sporangiophores, larger sporangiospores, and columellae. The novel species exhibits similarities of 91.62â% for internal transcribed spacer (ITS), 98.66-99.10â% for ribosomal small subunit (nrSSU), and 96.36-98.22â% for ribosomal large subunit (nrLSU) sequences, respectively, compared to S. umbellata. Furthermore, phylogenetic analyses based on combined sequences of ITS, nrLSU and nrSSU show that it forms a separate clade in Sporodiniella, and clusters closely with S. umbellata with high statistical support. The phylogenetic and morphological evidence support S. sinensis as a distinct species. Here, it is formally described and illustrated, and compared with other relatives.
Assuntos
Ácidos Graxos , Mucorales , Animais , Filogenia , China , Análise de Sequência de DNA , Composição de Bases , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Ácidos Graxos/química , InvertebradosRESUMO
BACKGROUND: Extensive adoption of transgenic Bt corn in recent years for stalk borer control has increased risk of resistance evolution in the target pest populations. A Bt-resistant strain of the sugarcane borer, Diatraea saccharalis, was approximately 100-fold more tolerant to Cry1Ab toxin than the susceptible counterpart. To gain a better understanding of the molecular mechanisms of Bt resistance, the Cry1Ab-susceptible (Cry1Ab-SS) and Cry1Ab-resistant (Cry1Ab-RR) strains of D. saccharalis were subjected to a microarray analysis. RESULTS: Results showed that the expression levels of many genes were significantly different between the Cry1Ab-RR and Cry1Ab-SS strains. Microarray analysis of 7145 cDNAs revealed 384 differentially expressed genes. A total of 273 genes were significantly upregulated 2-51.6-fold, and 111 genes were significantly downregulated 2-22.6-fold in the Cry1Ab-RR strain. The upregulation of three potential resistance-related genes, coding for a glutathione S-transferase (GST), a chymotrypsin-like protease (CHY) and a lipase (LP), was confirmed using real-time PCR, indicating a reproducibility of the microarray data. Ontology analysis revealed that more than twice the number of metabolic-related genes were upregulated compared with downregulated genes with the same biological function. Up to 35.2% of the upregulated genes in the resistant strain were associated with catalytic activity, while only 9.5% of the downregulated genes were related to the same catalytic molecular function. CONCLUSION: The large portion of metabolic- or catalytic-related genes with significant upregulations indicated a potential large increase in metabolic or catalytic activities in the Cry1Ab-RR strain. This cDNA microarray gene expression data could be used to characterize and identify new genes that may be associated with Bt resistance in D. saccharalis.