RESUMO
The most extreme environments are the most vulnerable to transformation under a rapidly changing climate. These ecosystems harbor some of the most specialized species, which will likely suffer the highest extinction rates. We document the steepest temperature increase (2010-2021) on record at altitudes of above 4,000 m, triggering a decline of the relictual and highly adapted moss Takakia lepidozioides. Its de-novo-sequenced genome with 27,467 protein-coding genes includes distinct adaptations to abiotic stresses and comprises the largest number of fast-evolving genes under positive selection. The uplift of the study site in the last 65 million years has resulted in life-threatening UV-B radiation and drastically reduced temperatures, and we detected several of the molecular adaptations of Takakia to these environmental changes. Surprisingly, specific morphological features likely occurred earlier than 165 mya in much warmer environments. Following nearly 400 million years of evolution and resilience, this species is now facing extinction.
Assuntos
Briófitas , Mudança Climática , Ecossistema , Aclimatação , Adaptação Fisiológica , Tibet , Briófitas/fisiologiaRESUMO
Cultivated rice varieties are all diploid, and polyploidization of rice has long been desired because of its advantages in genome buffering, vigorousness, and environmental robustness. However, a workable route remains elusive. Here, we describe a practical strategy, namely de novo domestication of wild allotetraploid rice. By screening allotetraploid wild rice inventory, we identified one genotype of Oryza alta (CCDD), polyploid rice 1 (PPR1), and established two important resources for its de novo domestication: (1) an efficient tissue culture, transformation, and genome editing system and (2) a high-quality genome assembly discriminated into two subgenomes of 12 chromosomes apiece. With these resources, we show that six agronomically important traits could be rapidly improved by editing O. alta homologs of the genes controlling these traits in diploid rice. Our results demonstrate the possibility that de novo domesticated allotetraploid rice can be developed into a new staple cereal to strengthen world food security.
Assuntos
Produtos Agrícolas/genética , Domesticação , Oryza/genética , Sistemas CRISPR-Cas , Segurança Alimentar , Edição de Genes , Variação Genética , Genoma de Planta , Oryza/classificação , PoliploidiaRESUMO
The pairing and synapsis of homologous chromosomes are crucial for their correct segregation during meiosis. The LINC (Linker of Nucleoskeleton and Cytoskeleton) complex can recruit kinesin protein at the nuclear envelope, affecting telomere bouquet formation and homologous pairing. Kinesin-1-like protein Pollen Semi-Sterility1 (PSS1) plays a pivotal role in male meiotic chromosomal behavior and is essential for fertility in rice. However, its exact role in meiosis, especially as kinesin involved in homologous pairing and synapsis, has not been fully elucidated. Here, we generated three pss1 mutants by genome editing technology to dissect PSS1 biological functions in meiosis. The pss1 mutants exhibit alterations in the radial microtubule organization at pachytene and manifest a deficiency in telomere clustering, which is critical for full-length homologous pairing. We reveal that PSS1 serves as a key mediator between chromosomes and cytoskeleton, thereby regulating microtubule organization and transmitting the force to nuclei to facilitate homologous chromosome pairing and synapsis in meiosis.
Assuntos
Pareamento Cromossômico , Meiose , Oryza , Proteínas de Plantas , Oryza/genética , Oryza/metabolismo , Pareamento Cromossômico/genética , Meiose/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Microtúbulos/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Cromossomos de Plantas/genética , Telômero/metabolismo , Telômero/genética , Pólen/genética , Pólen/metabolismo , Pólen/fisiologiaRESUMO
Temperature is one of the key environmental factors influencing crop fertility and yield. Understanding how plants sense and respond to temperature changes is, therefore, crucial for improving agricultural production. In this study, we characterized a temperature-sensitive male sterile mutant in rice (Oryza sativa), glutamyl-tRNA synthetase 1-2 (ers1-2), that shows reduced fertility at high temperatures and restored fertility at low temperatures. Mutation of ERS1 resulted in severely delayed pollen development and meiotic progression at high temperatures, eventually leading to male sterility. Moreover, meiosis-specific events, including synapsis and crossover formation, were also delayed in ers1-2 compared with the wild type. However, these defects were all mitigated by growing ers1-2 at low temperatures. Transcriptome analysis and measurement of ascorbate, glutathione, and hydrogen peroxide (H2O2) contents revealed that the delayed meiotic progression and male sterility in ers1-2 were strongly associated with changes in reactive oxygen species (ROS) homeostasis. At high temperatures, ers1-2 exhibited decreased accumulation of ROS scavengers and overaccumulation of ROS. In contrast, at low temperatures, the antioxidant system of ROS was more active, and ROS contents were lower. These data suggest that ROS homeostasis in ers1-2 is disrupted at high temperatures but restored at low temperatures. We speculate that ERS1 dysfunction leads to changes in ROS homeostasis under different conditions, resulting in delayed or rescued meiotic progression and thermosensitive male fertility. ers1-2 may hold great potential as a thermosensitive material for crop heterosis breeding.
Assuntos
Homeostase , Oryza , Infertilidade das Plantas , Espécies Reativas de Oxigênio , Oryza/genética , Oryza/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Infertilidade das Plantas/genética , Pólen/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Meiose/genética , Regulação da Expressão Gênica de Plantas , Temperatura , Mutação/genéticaRESUMO
During meiotic prophase I, chromosomes undergo large-scale dynamics to allow homologous chromosome pairing, prior to which chromosome ends attach to the inner nuclear envelope and form a chromosomal bouquet. Chromosome pairing is crucial for homologous recombination and accurate chromosome segregation during meiosis. However, the specific mechanism by which homologous chromosomes recognize each other is poorly understood. Here, we investigated the process of homologous chromosome pairing during early prophase I of meiosis in rice (Oryza sativa) using pooled oligo probes specific to an entire chromosome or chromosome arm. We revealed that chromosome pairing begins from both ends and extends toward the center from early zygotene through late zygotene. Genetic analysis of both trisomy and autotetraploidy also showed that pairing initiation is induced by both ends of a chromosome. However, healed ends that lack the original terminal regions on telocentric and acrocentric chromosomes cannot initiate homologous chromosome pairing, even though they may still enter the telomere clustering region at the bouquet stage. Furthermore, a chromosome that lacks the distal parts on both sides loses the ability to pair with other intact chromosomes. Thus, the native ends of chromosomes play a crucial role in initiating homologous chromosome pairing during meiosis and likely have a substantial impact on genome differentiation.
Assuntos
Pareamento Cromossômico , Cromossomos de Plantas , Meiose , Oryza , Oryza/genética , Pareamento Cromossômico/genética , Cromossomos de Plantas/genética , Meiose/genética , Telômero/genética , Hibridização in Situ Fluorescente , Prófase Meiótica I/genéticaRESUMO
Crossovers (COs) are necessary for generating genetic diversity that breeders can select, but there are conserved mechanisms that regulate their frequency and distribution. Increasing CO frequency may raise the efficiency of selection by increasing the chance of integrating more desirable traits. In this study, we characterize rice FANCM and explore its functions in meiotic CO control. FANCM mutations do not affect fertility in rice, but they cause a great boost in the overall frequency of COs in both inbred and hybrid rice, according to genetic analysis of the complete set of fancm zmm (hei10, ptd, shoc1, mer3, zip4, msh4, msh5, and heip1) mutants. Although the early homologous recombination events proceed normally in fancm, the meiotic extra COs are not marked with HEI10 and require MUS81 resolvase for resolution. FANCM depends on PAIR1, COM1, DMC1, and HUS1 to perform its functions. Simultaneous disruption of FANCM and MEICA1 synergistically increases CO frequency, but it is accompanied by nonhomologous chromosome associations and fragmentations. FANCM interacts with the MHF complex, and ablation of rice MHF1 or MHF2 could restore the formation of 12 bivalents in the absence of the ZMM gene ZIP4. Our data indicate that unleashing meiotic COs by mutating any member of the FANCM-MHF complex could be an effective procedure to accelerate the efficiency of rice breeding.
Assuntos
Oryza , Oryza/genética , DNA Helicases/genética , Melhoramento Vegetal , Meiose/genética , Recombinação Homóloga , Troca GenéticaRESUMO
Centromeres consist of highly repetitive sequences that are challenging to map, clone, and sequence. Active genes exist in centromeric regions, but their biological functions are difficult to explore owing to extreme suppression of recombination in these regions. In this study, we used the CRISPR/Cas9 system to knock out the transcribed gene Mitochondrial Ribosomal Protein L15 (OsMRPL15), located in the centromeric region of rice (Oryza sativa) chromosome 8, resulting in gametophyte sterility. Osmrpl15 pollen was completely sterile, with abnormalities appearing at the tricellular stage including the absence of starch granules and disrupted mitochondrial structure. Loss of OsMRPL15 caused abnormal accumulation of mitoribosomal proteins and large subunit rRNA in pollen mitochondria. Moreover, the biosynthesis of several proteins in mitochondria was defective, and expression of mitochondrial genes was upregulated at the mRNA level. Osmrpl15 pollen contained smaller amounts of intermediates related to starch metabolism than wild-type pollen, while biosynthesis of several amino acids was upregulated, possibly to compensate for defective mitochondrial protein biosynthesis and initiate consumption of carbohydrates necessary for starch biosynthesis. These results provide further insight into how defects in mitoribosome development cause gametophyte male sterility.
Assuntos
Oryza , Oryza/genética , Oryza/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Genes de Plantas , Amido/metabolismo , Pólen/genética , Pólen/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMO
Neocentromeres develop when kinetochores assemble de novo at DNA loci that are not previously associated with CenH3 nucleosomes, and can rescue rearranged chromosomes that have lost a functional centromere. The molecular mechanisms associated with neocentromere formation in plants have been elusive. Here, we developed a Xian (indica) rice line with poor growth performance in the field due to approximately 272 kb deletion that spans centromeric DNA sequences, including the centromeric satellite repeat CentO, in the centromere of chromosome 8 (Cen8). The CENH3-binding domains were expanded downstream of the original CentO position in Cen8, which revealed a de novo centromere formation in rice. The neocentromere formation avoids chromosomal regions containing functional genes. Meanwhile, canonical histone H3 was replaced by CENH3 in the regions with low CENH3 levels, and the CenH3 nucleosomes in these regions became more periodic. In addition, we identified active genes in the deleted centromeric region, which are essential for chloroplast growth and development. In summary, our results provide valuable insights into neocentromere formation and show that functional genes exist in the centromeric regions of plant chromosomes.
Assuntos
Oryza , Centrômero/genética , Cromossomos Humanos Par 8 , Cromossomos de Plantas/genética , Humanos , Nucleossomos/genética , Oryza/genéticaRESUMO
Meiotic crossovers ensure accurate chromosome segregation and increase genetic diversity. RAD51C and RAD51D play an early role in facilitating RAD51 during homologous recombination. However, their later function in meiosis is largely unknown in plants. Here, through targeted disruption of RAD51C and RAD51D, we generated three new mutants and revealed their later meiotic role in crossover maturation. The rad51c-3 and rad51d-4 mutants showed a mixture of bivalents and univalents and no chromosomal entanglements, whereas rad51d-5 exhibited an intermediate phenotype with reduced chromosomal entanglements and increased bivalent formation compared with knockout alleles. Comparisons of RAD51 loadings and chromosomal entanglements in these single mutants, rad51c-3 rad51d-4, rad51c-3 dmc1a dmc1b, and rad51d-4 dmc1a dmc1b suggest that the retained level of RAD51 in mutants is required for uncovering their function in crossover formation. Reductions in chiasma frequency and later HEI10 foci in these mutants support that crossover maturation requires RAD51C and RAD51D. Moreover, interaction between RAD51D and MSH5 indicates that RAD51 paralogs may cooperate with MSH5 to ensure accurate Holliday junction processing into crossover products. This finding of the role of RAD51 paralogs in crossover control may be conserved from mammals to plants and advances our current understanding of these proteins.
Assuntos
Oryza , Animais , Oryza/genética , Oryza/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Meiose/genética , Recombinação Homóloga , MamíferosRESUMO
The endonuclease methyl methanesulfonate and UV-sensitive protein 81 (MUS81) has been reported to participate in DNA repair during mitosis and meiosis. However, the exact meiotic function of MUS81 in rice remains unclear. Here, we use a combination of physiological, cytological, and genetic approaches to provide evidence that MUS81 functions in atypical recombination intermediate resolution rather than crossover designation in rice. Cytological and genetic analysis revealed that the total chiasma numbers in mus81 mutants were indistinguishable from wild-type. The numbers of HEI10 foci (the sites of interference-sensitive crossovers) in mus81 were also similar to that of wild-type. Moreover, disruption of MUS81 in msh5 or msh4 msh5 background did not further decrease chiasmata frequency, suggesting that rice MUS81 did not function in crossover designation. Mutation of FANCM and ZEP1 could enhance recombination frequency. Unexpectedly, chromosome fragments and bridges were frequently observed in mus81 zep1 and mus81 fancm, illustrating that MUS81 may resolve atypical recombination intermediates. Taken together, our data suggest that MUS81 contributes little to crossover designation but plays a crucial role in the resolution of atypical meiotic intermediates by working together with other anti-crossover factors.
Assuntos
Troca Genética , Oryza , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Oryza/genética , Oryza/metabolismo , Meiose/genética , Endonucleases/genética , Endonucleases/metabolismoRESUMO
Chromosome segregation must be under strict regulation to maintain chromosome euploidy and stability. Cell Division Cycle 20 (CDC20) is an essential cell cycle regulator that promotes the metaphase-to-anaphase transition and functions in the spindle assembly checkpoint, a surveillance pathway that ensures the fidelity of chromosome segregation. Plant CDC20 genes are present in multiple copies, and whether CDC20s have the same functions in plants as in yeast and animals is unclear, given the potential for divergence or redundancy among the multiple copies. Here, we studied all three CDC20 genes in rice (Oryza sativa) and constructed two triple mutants by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9-mediated genome editing to explore their roles in development. Knocking out all three CDC20 genes led to total sterility but did not affect vegetative development. Loss of the three CDC20 proteins did not alter mitotic division but severely disrupted meiosis as a result of asynchronous and unequal chromosome segregation, chromosome lagging, and premature separation of chromatids. Immunofluorescence of tubulin revealed malformed meiotic spindles in microsporocytes of the triple mutants. Furthermore, cytokinesis of meiosis I was absent or abnormal, and cytokinesis II was completely prevented in all mutant microsporocytes; thus, no tetrads or pollen formed in either cdc20 triple mutant. Finally, the subcellular structures and functions of the tapetum were disturbed by the lack of CDC20 proteins. These findings demonstrate that the three rice CDC20s play redundant roles but are indispensable for faithful meiotic chromosome segregation and cytokinesis, which are required for the production of fertile microspores.
Assuntos
Divisão Celular/genética , Segregação de Cromossomos/genética , Citocinese/genética , Meiose/genética , Oryza/genética , Produtos Agrícolas/genética , Regulação da Expressão Gênica de Plantas , Genes de PlantasRESUMO
RNA-dependent RNA polymerase 6 (RDR6) is a core component of the small RNA biogenesis pathway, but its function in meiosis is unclear. Here, we report a new allele of OsRDR6 (Osrdr6-meiosis [Osrdr6-mei]), which causes meiosis-specific phenotypes in rice (Oryza sativa). In Osrdr6-mei, meiotic double-strand break (DSB) formation is partially blocked. We created a biallelic mutant with more severe phenotypes, Osrdr6-bi, by crossing Osrdr6-mei with a knockout mutant, Osrdr6-edit In Osrdr6-bi meiocytes, 24 univalents were observed, and no histone H2AX phosphorylation foci were detected. Compared with the wild type, the number of 21-nucleotide small RNAs in Osrdr6-mei was dramatically lower, while the number of 24-nucleotide small RNAs was significantly higher. Thousands of differentially methylated regions (DMRs) were discovered in Osrdr6-mei, implying that OsRDR6 plays an important role in DNA methylation. There were 457 genes downregulated in Osrdr6-mei, including three genes, CENTRAL REGION COMPONENT1, P31 comet , and O. sativa SOLO DANCERS, related to DSB formation. Interestingly, the downregulated genes were associated with a high level of 24-nucleotide small RNAs but less strongly associated with DMRs. Therefore, we speculate that the alteration in expression of small RNAs in Osrdr6 mutants leads to the defects in DSB formation during meiosis, which might not be directly dependent on RNA-directed DNA methylation.
Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Meiose , Oryza/genética , Proteínas de Plantas/genética , RNA Polimerase Dependente de RNA/genética , Metilação de DNA , Reparo do DNA/fisiologia , Regulação da Expressão Gênica de Plantas , Mutação , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , RNA de Plantas/biossíntese , RNA Polimerase Dependente de RNA/metabolismoRESUMO
In flowering plants, the transition from mitosis to meiosis is the precondition for gametogenesis, which is the most crucial event during sexual reproduction. Here, we report an intriguing mechanism whereby germ cells and surrounding somatic cells cooperatively involve in the meiotic switch during anther development in rice (Oryza sativa). In double mutants with loss function of both leptotene chromosome establishment- and somatic cell layer differentiation-associated genes, chromosome morphology in the reproductive cells remains the same as that in somatic cells, and sporogenous cells fail to differentiate into pollen mother cells. OsSPOROCYTELESS and MICROSPORELESS1, two pivotal genes involved in meiosis entry, are prominently downregulated in anthers of plants with mutations in both MULTIPLE SPOROCYTE1 and LEPTOTENE 1. In addition, the transcription of redox-related genes is also affected. Therefore, germ cells and the surrounding somatic cells collaboratively participate in meiosis initiation in rice.
Assuntos
Cromossomos de Plantas/genética , Flores/citologia , Oryza/citologia , Proteínas de Plantas/genética , Diferenciação Celular , Flores/genética , Regulação da Expressão Gênica de Plantas , Meiose , Mutação , Oryza/genética , Células Vegetais , Plantas Geneticamente ModificadasRESUMO
Replication protein A (RPA), a single-stranded DNA-binding protein, plays essential role in homologous recombination. However, because deletion of RPA causes embryonic lethality in mammals, the exact function of RPA in meiosis remains unclear. In this study, we generated an rpa1a mutant using CRISPR/Cas9 technology and explored its function in rice (Oryza sativa) meiosis. In rpa1a, 12 bivalents were formed at metaphase I, just like in wild-type, but chromosome fragmentations were consistently observed at anaphase I. Fluorescence in situ hybridization assays indicated that these fragmentations were due to the failure of the recombination intermediates to resolve. Importantly, the mutant had a highly elevated chiasma number, and loss of RPA1a could completely restore the 12 bivalent formations in the zmm (for ZIP1-4, MSH4/5, and MER3) mutant background. Protein-protein interaction assays showed that RPA1a formed a complex with the methyl methansulfonate and UV sensitive 81 (and the Fanconi anemia complementation group M-Bloom syndrome protein homologs (RECQ4A)-Topoisomerase3α-RecQ-mediated genome instability 1 complex to regulate chiasma formation and processing of the recombination intermediates. Thus, our data establish a pivotal role for RPA1a in promoting the accurate resolution of recombination intermediates and in limiting redundant chiasma formation during rice meiosis.
Assuntos
Proteínas de Ligação a DNA/genética , Meiose , Oryza/genética , Proteínas de Plantas/genética , Proteína de Replicação A/genética , Proteínas de Ligação a DNA/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Proteína de Replicação A/metabolismoRESUMO
The organization of microtubules into a bipolar spindle is essential for chromosome segregation. Both centrosome and chromatin-dependent spindle assembly mechanisms are well studied in mouse, Drosophila melanogaster, and Xenopus oocytes; however, the mechanism of bipolar spindle assembly in plant meiosis remains elusive. According to our observations of microtubule assembly in Oryza sativa, Zea mays, Arabidopsis thaliana, and Solanum lycopersicum, we propose that a key step of plant bipolar spindle assembly is the correction of the multipolar spindle into a bipolar spindle at metaphase I. The multipolar spindles failed to transition into bipolar ones in OsmtopVIB with the defect in double-strand break (DSB) formation. However, bipolar spindles were normally assembled in several other mutants lacking DSB formation, such as Osspo11-1, pair2, and crc1, indicating that bipolar spindle assembly is independent of DSB formation. We further revealed that the mono-orientation of sister kinetochores was prevalent in OsmtopVIB, whereas biorientation of sister kinetochores was frequently observed in Osspo11-1, pair2, and crc1 In addition, mutations of the cohesion subunit OsREC8 resulted in biorientation of sister kinetochores as well as bipolar spindles even in the background of OsmtopVIB Therefore, we propose that biorientation of the kinetochore is required for bipolar spindle assembly in the absence of homologous recombination.
Assuntos
Meiose , Oryza/citologia , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Fuso Acromático/metabolismo , Quebras de DNA de Cadeia Dupla , Haploidia , Cinetocoros/metabolismo , Modelos Biológicos , Mutação/genéticaRESUMO
Meiotic recombination plays a pivotal role in achieving accurate chromosomal segregation and increasing genetic diversity. In the homologous recombination pathway, the detailed mechanisms of how OsRAD51 and OsDMC1 work in rice meiosis remain to be explored. Here, we obtained different types of mutants for Osrad51a1, Osrad51a2, Osdmc1a, and Osdmc1b through CRISPR/Cas9. Both Osrad51a1 and Osrad51a2 exhibited normal vegetative growth and fertility. Osrad51 (Osrad51a1 Osrad51a2) mutant plants show normal vegetative growth but exhibit complete sterility, indicating that OsRAD51A1 and OsRAD51A2 are functionally redundant in rice fertility. In contrast to the wild type, Osrad51 chromosomes are not paired perfectly at pachytene and synaptonemal complex (SC) formation is deficient. Moreover, univalents and multivalent associations were observed at metaphase I, chromosome fragments presented at anaphase I, and crossover formation is basically suppressed in Osrad51 pollen mother cells (PMCs). OsRAD51 foci emerge at leptotene and disappear from late pachytene and chromosome localization of OsRAD51 depends on the formation of double-strand breaks (DSBs). Most OsRAD51 foci can co-localize with OsDMC1 signals. OsRAD51 is essential for the loading of OsDMC1 onto chromosomes, and vice versa. In addition, both OsRAD51 and OsDMC1 can interact with OsFIGL1 and OsBRCA2, two important components in rice meiosis. Moreover, the Osrad51 Osdmc1 (Osrad51a1 Osrad51a2 Osdmc1a Osdmc1b) quadruple mutant PMCs exhibited similar defective phenotypes as Osrad51 in homologous pairing, synapsis, and DSB repair. Taken together, our results suggest that the recombinases DMC1 and RAD51 may functionally depend on each other and play important roles in meiotic recombination during meiosis in rice.
Assuntos
Oryza , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , Recombinação Homóloga , Meiose/genética , Oryza/genética , Oryza/metabolismoRESUMO
Highly coordinated pollen wall patterning is essential for male reproductive development. Here, we report the identification of Defective Microspore Development 1 (DMD1), which encodes a nuclear-localized protein possessing transactivation activity. DMD1 is preferentially expressed in the tapetum and microspores during post-meiotic development. Mutations in DMD1 cause a male-sterile phenotype with impaired microspore cell integrity. The mutants display abnormal callose degradation, accompanied by inhibited primexine thickening in the newly released microspores. Several genes associated with callose degradation and primexine formation are downregulated in dmd1 anthers. In addition, irregular Ubisch body morphology and discontinuous endexine occur, and the baculum is completely absent in dmd1. DMD1 interacts with Tapetum Degeneration Retardation (TDR), a basic helix-loop-helix transcription factor required for exine formation. Taken together, our results suggest that DMD1 is responsible for microspore cell integrity, primexine formation and exine pattern formation during Oryza sativa (rice) microspore development.
Assuntos
Oryza/metabolismo , Proteínas de Plantas/fisiologia , Pólen/metabolismo , Apoptose , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Microscopia Eletrônica de Transmissão , Oryza/crescimento & desenvolvimento , Infertilidade das Plantas , Proteínas de Plantas/metabolismo , Pólen/crescimento & desenvolvimento , Pólen/ultraestruturaRESUMO
The flag leaf and grain belong to the source and sink, respectively, of cereals, and both have a bearing on final yield. Premature leaf senescence significantly reduces the photosynthetic rate and severely lowers crop yield. Cytokinins play important roles in leaf senescence and determine grain number. Here, we characterized the roles of the rice (Oryza sativa L.) cytokinin oxidase/dehydrogenase OsCKX11 in delaying leaf senescence, increasing grain number, and coordinately regulating source and sink. OsCKX11 was predominantly expressed in the roots, leaves, and panicles and was strongly induced by abscisic acid and leaf senescence. Recombinant OsCKX11 protein catalysed the degradation of various types of cytokinins but showed preference for trans-zeatin and cis-zeatin. Cytokinin levels were significantly increased in the flag leaves of osckx11 mutant compared to those of the wild type (WT). In the osckx11 mutant, the ABA-biosynthesizing genes were down-regulated and the ABA-degrading genes were up-regulated, thereby reducing the ABA levels relative to the WT. Thus, OsCKX11 functions antagonistically between cytokinins and ABA in leaf senescence. Moreover, osckx11 presented with significantly increased branch, tiller, and grain number compared with the WT. Collectively, our findings reveal that OsCKX11 simultaneously regulates photosynthesis and grain number, which may provide new insights into leaf senescence and crop molecular breeding.
Assuntos
Oryza , Ácido Abscísico , Grão Comestível , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oxirredutases/genética , Folhas de PlantaRESUMO
The bipolar spindle structure in meiosis is essential for faithful chromosome segregation. PUTATIVE RECOMBINATION INITIATION DEFECT 1 (PRD1) previously has been shown to participate in the formation of DNA double strand breaks (DSBs). However, the role of PRD1 in meiotic spindle assembly has not been elucidated. Here, we reveal by both genetic analysis and immunostaining technology that PRD1 is involved in spindle assembly in rice (Oryza sativa) meiosis. We show that DSB formation and bipolar spindle assembly are disturbed in prd1 meiocytes. PRD1 signals display a dynamic pattern of localization from covering entire chromosomes at leptotene to congregating at the centromere region after leptotene. Centromeric localization of PRD1 signals depends on the organization of leptotene chromosomes, but not on DSB formation and axis establishment. PRD1 exhibits interaction and co-localization with several kinetochore components. We also find that bi-orientation of sister kinetochores within a univalent induced by mutation of REC8 can restore bipolarity in prd1. Furthermore, PRD1 directly interacts with REC8 and SGO1, suggesting that PRD1 may play a role in regulating the orientation of sister kinetochores. Taken together, we speculate that PRD1 promotes bipolar spindle assembly, presumably by modulating the orientation of sister kinetochores in rice meiosis.
Assuntos
Oryza , Segregação de Cromossomos/genética , Recombinação Homóloga , Cinetocoros , Meiose , Oryza/genética , Fatores de Iniciação de Peptídeos , Fuso AcromáticoRESUMO
During meiosis, Sad1/UNC-84 (SUN) domain proteins play conserved roles in promoting telomere bouquet formation and homologous pairing across species. Arabidopsis (Arabidopsis thaliana) AtSUN1 and AtSUN2 have been shown to have overlapping functions in meiosis. However, the role of SUN proteins in rice (Oryza sativa) meiosis and the extent of functional redundancy between them remain elusive. Here, we generated single and double mutants of OsSUN1 and OsSUN2 in rice using genome editing. The Ossun1 Ossun2 double mutant showed severe defects in telomere clustering, homologous pairing, and crossover formation, suggesting that OsSUN1 and OsSUN2 are essential for rice meiosis. When introducing a mutant allele of O. sativa SPORULATION11-1 (OsSPO11-1), which encodes a topoisomerase initiating homologous recombination, into the Ossun1 Ossun2 mutant, we observed a combined Osspo11-1- and Ossun1 Ossun2-like phenotype, demonstrating that OsSUN1 and OsSUN2 promote bouquet formation independent of OsSPO11-1 but regulate pairing and crossover formation downstream of OsSPO11-1. Importantly, the Ossun1 single mutant had a normal phenotype, but meiosis was disrupted in the Ossun2 mutant, indicating that OsSUN1 and OsSUN2 are not completely redundant in rice. Further analyses revealed a genetic dosage-dependent effect and an evolutionary differentiation between OsSUN1 and OsSUN2 These results suggested that OsSUN2 plays a more critical role than OsSUN1 in rice meiosis. Taken together, this work reveals the essential but partially redundant roles of OsSUN1 and OsSUN2 in rice meiosis and demonstrates that functional divergence of SUN proteins has taken place during evolution.