Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochemistry ; 53(42): 6641-52, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25286141

RESUMO

EphA1 is a receptor tyrosine kinase (RTK) that plays a key role in developmental processes, including guidance of the migration of axons and cells in the nervous system. EphA1, in common with other RTKs, contains an N-terminal extracellular domain, a single transmembrane (TM) α-helix, and a C-terminal intracellular kinase domain. The TM helix forms a dimer, as seen in recent NMR studies. We have modeled the EphA1 TM dimer using a multiscale approach combining coarse-grain (CG) and atomistic molecular dynamics (MD) simulations. The one-dimensional potential of mean force (PMF) for this system, based on interhelix separation, has been calculated using CG MD simulations. This provides a view of the free energy landscape for helix-helix interactions of the TM dimer in a lipid bilayer. The resulting PMF profiles suggest two states, consistent with a rotation-coupled activation mechanism. The more stable state corresponds to a right-handed helix dimer interacting via an N-terminal glycine zipper motif, consistent with a recent NMR structure (2K1K). A second metastable state corresponds to a structure in which the glycine zipper motif is not involved. Analysis of unrestrained CG MD simulations based on representative models from the PMF calculations or on the NMR structure reveals possible pathways of interconversion between these two states, involving helix rotations about their long axes. This suggests that the interaction of TM helices in EphA1 dimers may be intrinsically dynamic. This provides a potential mechanism for signaling whereby extracellular events drive a shift in the repopulation of the underlying TM helix dimer energy landscape.


Assuntos
Receptor EphA1/química , Dimerização , Humanos , Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Fosfolipídeos/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Termodinâmica
2.
Biophys J ; 100(8): 1940-8, 2011 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-21504730

RESUMO

The interaction of α-helical peptides with lipid bilayers is central to our understanding of the physicochemical principles of biological membrane organization and stability. Mutations that alter the position or orientation of an α-helix within a membrane, or that change the probability that the α-helix will insert into the membrane, can alter a range of membrane protein functions. We describe a comparative coarse-grained molecular dynamics simulation methodology, based on self-assembly of a lipid bilayer in the presence of an α-helical peptide, which allows us to model membrane transmembrane helix insertion. We validate this methodology against available experimental data for synthetic model peptides (WALP23 and LS3). Simulation-based estimates of apparent free energies of insertion into a bilayer of cystic fibrosis transmembrane regulator-derived helices correlate well with published data for translocon-mediated insertion. Comparison of values of the apparent free energy of insertion from self-assembly simulations with those from coarse-grained molecular dynamics potentials of mean force for model peptides, and with translocon-mediated insertion of cystic fibrosis transmembrane regulator-derived peptides suggests a nonequilibrium model of helix insertion into bilayers.


Assuntos
Membrana Celular/metabolismo , Simulação de Dinâmica Molecular , Peptídeos/metabolismo , Membrana Celular/química , Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Peptídeos/química , Ligação Proteica , Estrutura Secundária de Proteína , Reprodutibilidade dos Testes , Termodinâmica , Fatores de Tempo
3.
Structure ; 16(4): 621-30, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18400182

RESUMO

Complete determination of a membrane protein structure requires knowledge of the protein position within the lipid bilayer. As the number of determined structures of membrane proteins increases so does the need for computational methods which predict their position in the lipid bilayer. Here we present a coarse-grained molecular dynamics approach to lipid bilayer self-assembly around membrane proteins. We demonstrate that this method can be used to predict accurately the protein position in the bilayer for membrane proteins with a range of different sizes and architectures.


Assuntos
Simulação por Computador , Bicamadas Lipídicas/química , Proteínas de Membrana/química , Modelos Moleculares , 1,2-Dipalmitoilfosfatidilcolina/química , Aminoácidos/química
4.
Mol Membr Biol ; 25(8): 662-9, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18937097

RESUMO

Membrane protein function and stability has been shown to be dependent on the lipid environment. Recently, we developed a high-throughput computational approach for the prediction of membrane protein/lipid interactions. In the current study, we enhanced this approach with the addition of a new measure of the distortion caused by membrane proteins on a lipid bilayer. This is illustrated by considering the effect of lipid tail length and headgroup charge on the distortion caused by the integral membrane proteins MscS and FLAP, and by the voltage sensing domain from the channel KvAP. Changing the chain length of lipids alters the extent but not the pattern of distortion caused by MscS and FLAP; lipid headgroups distort in order to interact with very similar but not identical regions in these proteins for all bilayer widths investigated. Introducing anionic lipids into a DPPC bilayer containing the KvAP voltage sensor does not affect the extent of bilayer distortion.


Assuntos
Bicamadas Lipídicas/química , Proteínas de Membrana/química , Proteínas Ativadoras de 5-Lipoxigenase , Proteínas de Transporte/química , Simulação por Computador , Bases de Dados de Proteínas , Proteínas de Escherichia coli/química , Canais Iônicos/química , Modelos Moleculares , Canais de Potássio/química , Domínios e Motivos de Interação entre Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA