Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Development ; 150(9)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37039075

RESUMO

Cell invasion through basement membrane (BM) barriers is important in development, immune function and cancer progression. As invasion through BM is often stochastic, capturing gene expression profiles of actively invading cells in vivo remains elusive. Using the stereotyped timing of Caenorhabditis elegans anchor cell (AC) invasion, we generated an AC transcriptome during BM breaching. Through a focused RNAi screen of transcriptionally enriched genes, we identified new invasion regulators, including translationally controlled tumor protein (TCTP). We also discovered gene enrichment of ribosomal proteins. AC-specific RNAi, endogenous ribosome labeling and ribosome biogenesis analysis revealed that a burst of ribosome production occurs shortly after AC specification, which drives the translation of proteins mediating BM removal. Ribosomes also enrich near the AC endoplasmic reticulum (ER) Sec61 translocon and the endomembrane system expands before invasion. We show that AC invasion is sensitive to ER stress, indicating a heightened requirement for translation of ER-trafficked proteins. These studies reveal key roles for ribosome biogenesis and endomembrane expansion in cell invasion through BM and establish the AC transcriptome as a resource to identify mechanisms underlying BM transmigration.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Transcriptoma/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Membrana Basal/metabolismo , Ribossomos/genética , Ribossomos/metabolismo
2.
Proc Natl Acad Sci U S A ; 115(45): 11537-11542, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30348801

RESUMO

During invasion, cells breach basement membrane (BM) barriers with actin-rich protrusions. It remains unclear, however, whether actin polymerization applies pushing forces to help break through BM, or whether actin filaments play a passive role as scaffolding for targeting invasive machinery. Here, using the developmental event of anchor cell (AC) invasion in Caenorhabditis elegans, we observe that the AC deforms the BM and underlying tissue just before invasion, exerting forces in the tens of nanonewtons range. Deformation is driven by actin polymerization nucleated by the Arp2/3 complex and its activators, whereas formins and cross-linkers are dispensable. Delays in invasion upon actin regulator loss are not caused by defects in AC polarity, trafficking, or secretion, as appropriate markers are correctly localized in the AC even when actin is reduced and invasion is disrupted. Overall force production emerges from this study as one of the main tools that invading cells use to promote BM disruption in C. elegans.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Membrana Basal/metabolismo , Caenorhabditis elegans/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Mecanotransdução Celular , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Actinas/genética , Animais , Membrana Basal/citologia , Fenômenos Biomecânicos , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Movimento Celular , Células Eucarióticas/citologia , Células Eucarióticas/metabolismo , Proteínas Fetais/genética , Proteínas Fetais/metabolismo , Forminas , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Laminina/genética , Laminina/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Morfogênese/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Polimerização , Proteína Vermelha Fluorescente
3.
PLoS Genet ; 12(2): e1005905, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26926673

RESUMO

Overexpression of SPARC, a collagen-binding glycoprotein, is strongly associated with tumor invasion through extracellular matrix in many aggressive cancers. SPARC regulates numerous cellular processes including integrin-mediated cell adhesion, cell signaling pathways, and extracellular matrix assembly; however, the mechanism by which SPARC promotes cell invasion in vivo remains unclear. A main obstacle in understanding SPARC function has been the difficulty of visualizing and experimentally examining the dynamic interactions between invasive cells, extracellular matrix and SPARC in native tissue environments. Using the model of anchor cell invasion through the basement membrane (BM) extracellular matrix in Caenorhabditis elegans, we find that SPARC overexpression is highly pro-invasive and rescues BM transmigration in mutants with defects in diverse aspects of invasion, including cell polarity, invadopodia formation, and matrix metalloproteinase expression. By examining BM assembly, we find that overexpression of SPARC specifically decreases levels of BM type IV collagen, a crucial structural BM component. Reduction of type IV collagen mimicked SPARC overexpression and was sufficient to promote invasion. Tissue-specific overexpression and photobleaching experiments revealed that SPARC acts extracellularly to inhibit collagen incorporation into BM. By reducing endogenous SPARC, we also found that SPARC functions normally to traffic collagen from its site of synthesis to tissues that do not express collagen. We propose that a surplus of SPARC disrupts extracellular collagen trafficking and reduces BM collagen incorporation, thus weakening the BM barrier and dramatically enhancing its ability to be breached by invasive cells.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Colágeno Tipo IV/metabolismo , Osteonectina/metabolismo , Animais , Animais Geneticamente Modificados , Membrana Basal , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica , Mutação , Osteonectina/genética , Proteínas Proto-Oncogênicas c-fos/genética
4.
PLoS Genet ; 12(1): e1005786, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26765257

RESUMO

Invadopodia are specialized membrane protrusions composed of F-actin, actin regulators, signaling proteins, and a dynamically trafficked invadopodial membrane that drive cell invasion through basement membrane (BM) barriers in development and cancer. Due to the challenges of studying invasion in vivo, mechanisms controlling invadopodia formation in their native environments remain poorly understood. We performed a sensitized genome-wide RNAi screen and identified 13 potential regulators of invadopodia during anchor cell (AC) invasion into the vulval epithelium in C. elegans. Confirming the specificity of this screen, we identified the Rho GTPase cdc-42, which mediates invadopodia formation in many cancer cell lines. Using live-cell imaging, we show that CDC-42 localizes to the AC-BM interface and is activated by an unidentified vulval signal(s) that induces invasion. CDC-42 is required for the invasive membrane localization of WSP-1 (N-WASP), a CDC-42 effector that promotes polymerization of F-actin. Loss of CDC-42 or WSP-1 resulted in fewer invadopodia and delayed BM breaching. We also characterized a novel invadopodia regulator, gdi-1 (Rab GDP dissociation inhibitor), which mediates membrane trafficking. We show that GDI-1 functions in the AC to promote invadopodia formation. In the absence of GDI-1, the specialized invadopodial membrane was no longer trafficked normally to the invasive membrane, and instead was distributed to plasma membrane throughout the cell. Surprisingly, the pro-invasive signal(s) from the vulval cells also controls GDI-1 activity and invadopodial membrane trafficking. These studies represent the first in vivo screen for genes regulating invadopodia and demonstrate that invadopodia formation requires the integration of distinct cellular processes that are coordinated by an extracellular cue.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ligação ao GTP/genética , Inibidores de Dissociação do Nucleotídeo Guanina/genética , Neoplasias/genética , Podossomos/genética , Animais , Membrana Basal/crescimento & desenvolvimento , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/biossíntese , Proteínas de Ciclo Celular/biossíntese , Modelos Animais de Doenças , Matriz Extracelular/genética , Proteínas de Ligação ao GTP/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Inibidores de Dissociação do Nucleotídeo Guanina/biossíntese , Humanos , Neoplasias/patologia , Podossomos/patologia , Transdução de Sinais
5.
Dev Biol ; 429(1): 271-284, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28648843

RESUMO

Many stem cell niches contain support cells that increase contact with stem cells by enwrapping them in cellular processes. One example is the germ stem cell niche in C. elegans, which is composed of a single niche cell termed the distal tip cell (DTC) that extends cellular processes, constructing an elaborate plexus that enwraps germ stem cells. To identify genes required for plexus formation and to explore the function of this specialized enwrapping behavior, a series of targeted and tissue-specific RNAi screens were performed. Here we identify genes that promote stem cell enwrapment by the DTC plexus, including a set that specifically functions within the DTC, such as the chromatin modifier lin-40/MTA1, and others that act within the germline, such as the 14-3-3 signaling protein par-5. Analysis of genes that function within the germline to mediate plexus development reveal that they are required for expansion of the germ progenitor zone, supporting the emerging idea that germ stem cells signal to the niche to stimulate enwrapping behavior. Examination of wild-type animals with asymmetric plexus formation and animals with reduced DTC plexus elaboration via loss of two candidates including lin-40 indicate that cellular enwrapment promotes GLP-1/Notch signaling and germ stem cell fate. Together, our work identifies novel regulators of cellular enwrapment and suggests that reciprocal signaling between the DTC niche and the germ stem cells promotes enwrapment behavior and stem cell fate.


Assuntos
Caenorhabditis elegans/citologia , Células Germinativas/citologia , Nicho de Células-Tronco , Células-Tronco/citologia , Animais , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Linhagem da Célula , Embrião não Mamífero/citologia , Genes de Helmintos , Genes Reporter , Células Germinativas/metabolismo , Interferência de RNA , Transgenes
6.
Development ; 141(6): 1342-53, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24553288

RESUMO

To transmigrate basement membrane, cells must coordinate distinct signaling activities to breach and pass through this dense extracellular matrix barrier. Netrin expression and activity are strongly associated with invasion in developmental and pathological processes, but how netrin signaling is coordinated with other pathways during invasion is poorly understood. Using the model of anchor cell (AC) invasion in C. elegans, we have previously shown that the integrin receptor heterodimer INA-1/PAT-3 promotes netrin receptor UNC-40 (DCC) localization to the invasive cell membrane of the AC. UNC-6 (netrin)/UNC-40 interactions generate an invasive protrusion that crosses the basement membrane. To understand how UNC-40 signals during invasion, we have used genetic, site of action and live-cell imaging studies to examine the roles of known effectors of UNC-40 signaling in axon outgrowth during AC invasion. UNC-34 (Ena/VASP), the Rac GTPases MIG-2 and CED-10 and the actin binding protein UNC-115 (abLIM) are dedicated UNC-40 effectors that are recruited to the invasive membrane by UNC-40 and generate F-actin. MIG-10 (lamellipodin), an effector of UNC-40 in neurons, however, has independent functions from UNC-6/UNC-40. Furthermore, unlike other UNC-40 effectors, its expression is regulated by FOS-1A, a transcription factor that promotes basement membrane breaching. Similar to UNC-40, however, MIG-10 localization to the invasive cell membrane is also dependent on the integrin INA-1/PAT-3. These studies indicate that MIG-10 has distinct functions from UNC-40 signaling in cell invasion, and demonstrate that integrin coordinates invasion by localizing these molecules to the cell-basement membrane interface.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Actinas/biossíntese , Animais , Animais Geneticamente Modificados , Membrana Basal/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/genética , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Movimento Celular/genética , Movimento Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Genes de Helmintos , Cadeias beta de Integrinas/genética , Cadeias beta de Integrinas/metabolismo , Integrinas/genética , Integrinas/metabolismo , Proteínas do Tecido Nervoso/genética , Netrinas , Proteínas Proto-Oncogênicas c-fos/genética , Transdução de Sinais
7.
Proc Natl Acad Sci U S A ; 109(9): 3492-7, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22328155

RESUMO

Odorant receptors (ORs) in olfactory sensory neurons (OSNs) mediate detection of volatile odorants. Divalent sulfur compounds, such as thiols and thioethers, are extremely potent odorants. We identify a mouse OR, MOR244-3, robustly responding to (methylthio)methanethiol (MeSCH(2)SH; MTMT) in heterologous cells. Found specifically in male mouse urine, strong-smelling MTMT [human threshold 100 parts per billion (ppb)] is a semiochemical that attracts female mice. Nonadjacent thiol and thioether groups in MTMT suggest involvement of a chelated metal complex in MOR244-3 activation. Metal ion involvement in thiol-OR interactions was previously proposed, but whether these ions change thiol-mediated OR activation remained unknown. We show that copper ion among all metal ions tested is required for robust activation of MOR244-3 toward ppb levels of MTMT, structurally related sulfur compounds, and other metal-coordinating odorants (e.g., strong-smelling trans-cyclooctene) among >125 compounds tested. Copper chelator (tetraethylenepentamine, TEPA) addition abolishes the response of MOR244-3 to MTMT. Histidine 105, located in the third transmembrane domain near the extracellular side, is proposed to serve as a copper-coordinating residue mediating interaction with the MTMT-copper complex. Electrophysiological recordings of the OSNs in the septal organ, abundantly expressing MOR244-3, revealed neurons responding to MTMT. Addition of copper ion and chelator TEPA respectively enhanced and reduced the response of some MTMT-responding neurons, demonstrating the physiological relevance of copper ion in olfaction. In a behavioral context, an olfactory discrimination assay showed that mice injected with TEPA failed to discriminate MTMT. This report establishes the role of metal ions in mammalian odor detection by ORs.


Assuntos
Cobre/fisiologia , Odorantes , Neurônios Receptores Olfatórios/metabolismo , Receptores Odorantes/química , Atrativos Sexuais/metabolismo , Compostos de Sulfidrila/metabolismo , Sulfetos/metabolismo , Sequência de Aminoácidos , Animais , Cátions/farmacologia , Quelantes/farmacologia , AMP Cíclico/análise , Relação Dose-Resposta a Droga , Etilenodiaminas/farmacologia , Feminino , Histidina/química , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Dados de Sequência Molecular , Técnicas de Patch-Clamp , Conformação Proteica , Estrutura Terciária de Proteína , Receptores Odorantes/genética , Receptores Odorantes/fisiologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Especificidade por Substrato , Compostos de Enxofre/metabolismo
8.
Nature ; 449(7161): 468-72, 2007 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-17873857

RESUMO

Human olfactory perception differs enormously between individuals, with large reported perceptual variations in the intensity and pleasantness of a given odour. For instance, androstenone (5alpha-androst-16-en-3-one), an odorous steroid derived from testosterone, is variously perceived by different individuals as offensive ("sweaty, urinous"), pleasant ("sweet, floral") or odourless. Similar variation in odour perception has been observed for several other odours. The mechanistic basis of variation in odour perception between individuals is unknown. We investigated whether genetic variation in human odorant receptor genes accounts in part for variation in odour perception between individuals. Here we show that a human odorant receptor, OR7D4, is selectively activated in vitro by androstenone and the related odorous steroid androstadienone (androsta-4,16-dien-3-one) and does not respond to a panel of 64 other odours and two solvents. A common variant of this receptor (OR7D4 WM) contains two non-synonymous single nucleotide polymorphisms (SNPs), resulting in two amino acid substitutions (R88W, T133M; hence 'RT') that severely impair function in vitro. Human subjects with RT/WM or WM/WM genotypes as a group were less sensitive to androstenone and androstadienone and found both odours less unpleasant than the RT/RT group. Genotypic variation in OR7D4 accounts for a significant proportion of the valence (pleasantness or unpleasantness) and intensity variance in perception of these steroidal odours. Our results demonstrate the first link between the function of a human odorant receptor in vitro and odour perception.


Assuntos
Variação Genética/genética , Percepção/fisiologia , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Olfato/genética , Olfato/fisiologia , Androstadienos/análise , Androstadienos/farmacologia , Androstenos/análise , Androstenos/farmacologia , Animais , Linhagem Celular , Genótipo , Humanos , Dados de Sequência Molecular , Odorantes , Pan troglodytes , Percepção/efeitos dos fármacos , Polimorfismo de Nucleotídeo Único/genética , Olfato/efeitos dos fármacos
9.
MicroPubl Biol ; 20232023.
Artigo em Inglês | MEDLINE | ID: mdl-37033704

RESUMO

Transgene driven protein expression is an important tool for investigating developmental mechanisms in C. elegans . Here, we have assessed protein production rates and levels in L3 larval uterine cells (UCs). Using ubiquitous promoter driven cytosolic and transmembrane tethered GFP, fluorescence recovery after photobleaching, and quantitative fluorescence analysis, we reveal that cytosolic GFP is produced at an ~two-fold higher rate than transmembrane tethered GFP and accumulates at ~five-fold higher levels in UCs. We also provide evidence that cytosolic GFP in the anchor cell, a specialized UC that mediates uterine-vulval connection, is more rapidly degraded through an autophagy-independent mechanism.

10.
MicroPubl Biol ; 20232023.
Artigo em Inglês | MEDLINE | ID: mdl-37692087

RESUMO

Ras GTPases regulate many developmental and physiological processes and mutations in Ras are associated with numerous human cancers. Here, we report the function, levels, and localization of an N-terminal knock-in of mNeonGreen (mNG) into C. elegans LET-60 /Ras. mNG:: LET-60 interferes with some but not all LET-60 /Ras functions. mNG:: LET-60 is broadly present in tissues, found at different levels in cells, and concentrates in distinct subcellular compartments, including the nucleolus, nucleus, intracellular region, and plasma membrane. These results suggest that mNG:: LET-60 can be a useful tool for determining LET-60 levels and localization once its functionality in a developmental or physiological process is established.

11.
J Cell Biol ; 222(1)2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36282214

RESUMO

Basement membrane (BM) matrices surround and separate most tissues. However, through poorly understood mechanisms, BMs of adjacent tissue can also stably link to support organ structure and function. Using endogenous knock-in fluorescent proteins, conditional RNAi, optogenetics, and quantitative live imaging, we identified extracellular matrix proteins mediating a BM linkage (B-LINK) between the uterine utse and epidermal seam cell BMs in Caenorhabditis elegans that supports the uterus during egg-laying. We found that hemicentin is secreted by the utse and promotes fibulin-1 assembly to jointly initiate the B-LINK. During egg-laying, however, both proteins' levels decline and are not required for B-LINK maintenance. Instead, we discovered that hemicentin recruits ADAMTS9/20, which facilitates the assembly of high levels of type IV collagen that sustains the B-LINK during the mechanically active egg-laying period. This work reveals mechanisms underlying BM-BM linkage maturation and identifies a crucial function for hemicentin and fibulin-1 in initiating attachment and type IV collagen in strengthening this specialized form of tissue linkage.


Assuntos
Membrana Basal , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Colágeno Tipo IV , Animais , Feminino , Membrana Basal/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Colágeno Tipo IV/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Óvulo , Útero
12.
Elife ; 122023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37405383

RESUMO

Separate tissues connect through adjoining basement membranes to carry out molecular barrier, exchange, and organ support functions. Cell adhesion at these connections must be robust and balanced to withstand independent tissue movement. Yet, how cells achieve synchronized adhesion to connect tissues is unknown. Here, we have investigated this question using the Caenorhabditis elegans utse-seam tissue connection that supports the uterus during egg-laying. Through genetics, quantitative fluorescence, and cell-specific molecular disruption, we show that type IV collagen, which fastens the linkage, also activates the collagen receptor discoidin domain receptor-2 (DDR-2) in both the utse and seam. RNAi depletion, genome editing, and photobleaching experiments revealed that DDR-2 signals through LET-60/Ras to coordinately strengthen an integrin adhesion in the utse and seam that stabilizes their connection. These results uncover a synchronizing mechanism for robust adhesion during tissue connection, where collagen both affixes the linkage and signals to both tissues to bolster their adhesion.


Assuntos
Receptor com Domínio Discoidina 2 , Integrinas , Animais , Feminino , Receptores com Domínio Discoidina/metabolismo , Transdução de Sinais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Colágeno/metabolismo , Adesão Celular/fisiologia , Receptor com Domínio Discoidina 2/metabolismo
13.
bioRxiv ; 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-36993349

RESUMO

Separate tissues connect through adjoining basement membranes to carry out molecular barrier, exchange, and organ support functions. Cell adhesion at these connections must be robust and balanced to withstand independent tissue movement. Yet, how cells achieve synchronized adhesion to connect tissues is unknown. Here, we have investigated this question using the C. elegans utse-seam tissue connection that supports the uterus during egg-laying. Through genetics, quantitative fluorescence, and cell specific molecular disruption, we show that type IV collagen, which fastens the linkage, also activates the collagen receptor discoidin domain receptor 2 (DDR-2) in both the utse and seam. RNAi depletion, genome editing, and photobleaching experiments revealed that DDR-2 signals through LET-60/Ras to coordinately strengthen an integrin adhesion in the utse and seam that stabilizes their connection. These results uncover a synchronizing mechanism for robust adhesion during tissue connection, where collagen both affixes the linkage and signals to both tissues to bolster their adhesion.

14.
Dev Cell ; 57(6): 732-749.e7, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35316617

RESUMO

Invasive cells use transient, energy-consuming protrusions to breach basement membrane (BM) barriers. Using the ATP sensor PercevalHR during anchor cell (AC) invasion in Caenorhabditis elegans, we show that BM invasion is accompanied by an ATP burst from mitochondria at the invasive front. RNAi screening and visualization of a glucose biosensor identified two glucose transporters, FGT-1 and FGT-2, which bathe invasive front mitochondria with glucose and facilitate the ATP burst to form protrusions. FGT-1 localizes at high levels along the invasive membrane, while FGT-2 is adaptive, enriching most strongly during BM breaching and when FGT-1 is absent. Cytosolic glycolytic enzymes that process glucose for mitochondrial ATP production cluster with invasive front mitochondria and promote higher mitochondrial membrane potential and ATP levels. Finally, we show that UNC-6 (netrin), which polarizes invasive protrusions, also orients FGT-1. These studies reveal a robust and integrated energy acquisition, processing, and delivery network that powers BM breaching.


Assuntos
Proteínas de Caenorhabditis elegans , Actinas/metabolismo , Trifosfato de Adenosina/metabolismo , Membrana Basal/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Movimento Celular , Glucose/metabolismo , Mitocôndrias/metabolismo
15.
Sci Adv ; 8(20): eabn2265, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35584218

RESUMO

Basement membranes (BMs) are ubiquitous extracellular matrices whose composition remains elusive, limiting our understanding of BM regulation and function. By developing a bioinformatic and in vivo discovery pipeline, we define a network of 222 human proteins and their animal orthologs localized to BMs. Network analysis and screening in C. elegans and zebrafish uncovered BM regulators, including ADAMTS, ROBO, and TGFß. More than 100 BM network genes associate with human phenotypes, and by screening 63,039 genomes from families with rare disorders, we found loss-of-function variants in LAMA5, MPZL2, and MATN2 and show that they regulate BM composition and function. This cross-disciplinary study establishes the immense complexity of BMs and their impact on in human health.


Assuntos
Caenorhabditis elegans , Peixe-Zebra , Animais , Membrana Basal/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Humanos , Peixe-Zebra/genética
16.
Dev Cell ; 54(1): 60-74.e7, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32585132

RESUMO

Basement membranes (BMs) are supramolecular matrices built on laminin and type IV collagen networks that provide structural and signaling support to tissues. BM complexity, however, has hindered an understanding of its formation, dynamics, and regulation. Using genome editing, we tagged 29 BM matrix components and receptors in C. elegans with mNeonGreen. Here, we report a common template that initiates BM formation, which rapidly diversifies during tissue differentiation. Through photobleaching studies, we show that BMs are not static-surprisingly, many matrix proteins move within the laminin and collagen scaffoldings. Finally, quantitative imaging, conditional knockdown, and optical highlighting indicate that papilin, a poorly studied glycoprotein, is the most abundant component in the gonadal BM, where it facilitates type IV collagen removal during BM expansion and tissue growth. Together, this work introduces methods for holistic investigation of BM regulation and reveals that BMs are highly dynamic and capable of rapid change to support tissues.


Assuntos
Membrana Basal/metabolismo , Matriz Extracelular/metabolismo , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Colágeno/genética , Colágeno/metabolismo , Laminina/genética , Laminina/metabolismo , Movimento (Física)
17.
J Cell Biol ; 218(9): 3098-3116, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31387941

RESUMO

Basement membranes (BMs) are cell-associated extracellular matrices that support tissue integrity, signaling, and barrier properties. Type IV collagen is critical for BM function, yet how it is directed into BMs in vivo is unclear. Through live-cell imaging of endogenous localization, conditional knockdown, and misexpression experiments, we uncovered distinct mechanisms of integrin-mediated collagen recruitment to Caenorhabditis elegans postembryonic gonadal and pharyngeal BMs. The putative laminin-binding αINA-1/ßPAT-3 integrin was selectively activated in the gonad and recruited laminin, which directed moderate collagen incorporation. In contrast, the putative Arg-Gly-Asp (RGD)-binding αPAT-2/ßPAT-3 integrin was activated in the pharynx and recruited high levels of collagen in an apparently laminin-independent manner. Through an RNAi screen, we further identified the small GTPase RAP-3 (Rap1) as a pharyngeal-specific PAT-2/PAT-3 activator that modulates collagen levels. Together, these studies demonstrate that tissues can use distinct mechanisms to direct collagen incorporation into BMs to precisely control collagen levels and construct diverse BMs.


Assuntos
Membrana Basal/embriologia , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , Colágeno Tipo IV/metabolismo , Cadeias beta de Integrinas/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Colágeno Tipo IV/genética , Cadeias beta de Integrinas/genética
18.
Dev Cell ; 48(3): 313-328.e8, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30686527

RESUMO

Matrix metalloproteinases (MMPs) are associated with decreased patient prognosis but have failed as anti-invasive drug targets despite promoting cancer cell invasion. Through time-lapse imaging, optical highlighting, and combined genetic removal of the five MMPs expressed during anchor cell (AC) invasion in C. elegans, we find that MMPs hasten invasion by degrading basement membrane (BM). Though irregular and delayed, AC invasion persists in MMP- animals via adaptive enrichment of the Arp2/3 complex at the invasive cell membrane, which drives formation of an F-actin-rich protrusion that physically breaches and displaces BM. Using a large-scale RNAi synergistic screen and a genetically encoded ATP FRET sensor, we discover that mitochondria enrich within the protrusion and provide localized ATP that fuels F-actin network growth. Thus, without MMPs, an invasive cell can alter its BM-breaching tactics, suggesting that targeting adaptive mechanisms will be necessary to mitigate BM invasion in human pathologies.


Assuntos
Actinas/metabolismo , Trifosfato de Adenosina/metabolismo , Membrana Basal/metabolismo , Metaloproteinases da Matriz/metabolismo , Polimerização , Citoesqueleto de Actina/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Membrana Celular/metabolismo , Movimento Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas do Tecido Nervoso/metabolismo
19.
Nat Commun ; 9(1): 4556, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30385742

RESUMO

Olfactory systems have evolved the extraordinary capability to detect and discriminate volatile odorous molecules (odorants) in the environment. Fundamentally, this process relies on the interaction of odorants and their cognate olfactory receptors (ORs) encoded in the genome. Here, we conducted a cell-based screen using over 800 mouse ORs against seven odorants, resulting in the identification of a set of high-affinity and/or broadly-tuned ORs. We then test whether heterologously expressed ORs respond to odors presented in vapor phase by individually expressing 31 ORs to measure cAMP responses against vapor phase odor stimulation. Comparison of response profiles demonstrates this platform is capable of discriminating between structural analogs. Lastly, co-expression of carboxyl esterase Ces1d expressed in olfactory mucosa resulted in marked changes in activation of specific odorant-OR combinations. Altogether, these results establish a cell-based volatile odor detection and discrimination platform and form the basis for an OR-based volatile odor sensor.


Assuntos
Odorantes , Mucosa Olfatória/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Receptores Odorantes/metabolismo , Acetofenonas , Aldeídos , Animais , Benzoatos , Hidrolases de Éster Carboxílico/metabolismo , AMP Cíclico/metabolismo , Cicloexanonas , Discriminação Psicológica , Eugenol , Cetonas , Camundongos , Proteínas dos Microfilamentos , Percepção Olfatória , Pentanóis
20.
Dev Cell ; 43(4): 403-417.e10, 2017 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-29161591

RESUMO

Invasive cells use small invadopodia to breach basement membrane (BM), a dense matrix that encases tissues. Following the breach, a large protrusion forms to clear a path for tissue entry by poorly understood mechanisms. Using RNAi screening for defects in Caenorhabditis elegans anchor cell (AC) invasion, we found that UNC-6(netrin)/UNC-40(DCC) signaling at the BM breach site directs exocytosis of lysosomes using the exocyst and SNARE SNAP-29 to form a large protrusion that invades vulval tissue. Live-cell imaging revealed that the protrusion is enriched in the matrix metalloprotease ZMP-1 and transiently expands AC volume by more than 20%, displacing surrounding BM and vulval epithelium. Photobleaching and genetic perturbations showed that the BM receptor dystroglycan forms a membrane diffusion barrier at the neck of the protrusion, which enables protrusion growth. Together these studies define a netrin-dependent pathway that builds an invasive protrusion, an isolated lysosome-derived membrane structure specialized to breach tissue barriers.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Membrana Celular/metabolismo , Exocitose/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Lisossomos/metabolismo , Animais , Animais Geneticamente Modificados , Membrana Basal/metabolismo , Movimento Celular/fisiologia , Proteínas do Tecido Nervoso/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA