Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Endod ; 43(6): 949-955, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28457636

RESUMO

INTRODUCTION: Enterococcus faecalis is a gram-positive bacterium associated with endodontic infections and is capable of forming biofilms that can confer drug resistance to the bacterium, resulting in treatment failure. Current knowledge on E. faecalis drug resistance is of a limited and conflicting nature. The present study examined the genetic basis of E. faecalis biofilm formation and drug resistance using a RNA sequencing (RNA-Seq)-based transcriptome approach. METHODS: Eighteen clinical isolates of E. faecalis were screened for their biofilm formation abilities using the crystal violet assay, colony counting, and confocal imaging. Selected isolates were then evaluated for antibiotic susceptibility in planktonic and biofilm growth modes followed by RNA-Seq analysis of E. faecalis planktonic, biofilm, and vancomycin-treated biofilm samples and Kyoto Encyclopedia of Genes and Genomes mapping in order to identify genes associated with biofilm formation and drug resistance of E. faecalis. RESULTS: All 18 clinical isolates retained biofilm formation ability and were classified as strong, weak, or laboratory American Type Culture Collection strainlike biofilm formers. Interestingly, both the strong and weak biofilm-forming isolates were uniformly resistant to ampicillin and vancomycin at the treated concentrations (256-4096 µg/mL). RNA-Seq analysis of these isolates identified a total of 163 and 101 differentially regulated genes in planktonic versus biofilm and vancomycin-treated biofilm versus biofilm comparisons, respectively, with significant differences in arsenic resistance operon genes arsR and arsD, sporulation regulatory gene paiA, ABC drug transporter classes, and penicillin-binding proteins. CONCLUSIONS: The present transcriptomic study revealed putative genes associated with E. faecalis biofilm formation and drug resistance, which will provide a foundation for improved therapeutic strategies against E. faecalis infections in the future.


Assuntos
Biofilmes , Enterococcus faecalis/efeitos dos fármacos , Perfilação da Expressão Gênica , Genes Bacterianos/genética , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Enterococcus faecalis/genética , Enterococcus faecalis/ultraestrutura , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Infecções por Bactérias Gram-Positivas/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Microscopia Confocal
2.
Biotechnol Biofuels ; 10: 32, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28174601

RESUMO

BACKGROUND: Lignin is a potential biorefinery feedstock for the production of value-added chemicals including vanillin. A huge amount of lignin is produced as a by-product of the paper industry, while cellulosic components of plant biomass are utilized for the production of paper pulp. In spite of vast potential, lignin remains the least exploited component of plant biomass due to its extremely complex and heterogenous structure. Several enzymes have been reported to have lignin-degrading properties and could be potentially used in lignin biorefining if their catalytic properties could be improved by enzyme engineering. The much needed improvement of lignin-degrading enzymes by high-throughput selection techniques such as directed evolution is currently limited, as robust methods for detecting the conversion of lignin to desired small molecules are not available. RESULTS: We identified a vanillin-inducible promoter by RNAseq analysis of Escherichia coli cells treated with a sublethal dose of vanillin and developed a genetically programmed vanillin-sensing cell by placing the 'very green fluorescent protein' gene under the control of this promoter. Fluorescence of the biosensing cell is enhanced significantly when grown in the presence of vanillin and is readily visualized by fluorescence microscopy. The use of fluorescence-activated cell sorting analysis further enhances the sensitivity, enabling dose-dependent detection of as low as 200 µM vanillin. The biosensor is highly specific to vanillin and no major response is elicited by the presence of lignin, lignin model compound, DMSO, vanillin analogues or non-specific toxic chemicals. CONCLUSIONS: We developed an engineered E. coli cell that can detect vanillin at a concentration as low as 200 µM. The vanillin-sensing cell did not show cross-reactivity towards lignin or major lignin degradation products including vanillin analogues. This engineered E. coli cell could potentially be used as a host cell for screening lignin-degrading enzymes that can convert lignin to vanillin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA