Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 27(1): 107-119, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29126155

RESUMO

Genital malformations are among the most common human birth defects, and both genetic and environmental factors can contribute to these malformations. Development of the external genitalia in mammals relies on complex signaling networks, and disruption of these signaling pathways can lead to genital defects. Islet-1 (ISL1), a member of the LIM/Homeobox family of transcription factors, has been identified as a major susceptibility gene for classic bladder exstrophy in humans, a common form of the bladder exstrophy-epispadias complex (BEEC), and is implicated in a role in urinary tract development. We report that deletion of Isl1 from the genital mesenchyme in mice led to hypoplasia of the genital tubercle and prepuce, with an ectopic urethral opening and epispadias-like phenotype. These mice also developed hydroureter and hydronephrosis. Identification of ISL1 transcriptional targets via ChIP-Seq and expression analyses revealed that Isl1 regulates several important signaling pathways during embryonic genital development, including the BMP, WNT, and FGF cascades. An essential function of Isl1 during development of the external genitalia is to induce Bmp4-mediated apoptosis in the genital mesenchyme. Together, these studies demonstrate that Isl1 plays a critical role during development of the external genitalia and forms the basis for a greater understanding of the molecular mechanisms underlying the pathogenesis of BEEC and urinary tract defects in humans.


Assuntos
Proteína Morfogenética Óssea 4/genética , Fator 10 de Crescimento de Fibroblastos/genética , Genitália/anormalidades , Genitália/embriologia , Proteínas com Homeodomínio LIM/genética , Fatores de Transcrição/genética , Proteína Wnt-5a/genética , Animais , Extrofia Vesical/genética , Extrofia Vesical/metabolismo , Proteína Morfogenética Óssea 4/biossíntese , Proteína Morfogenética Óssea 4/metabolismo , Desenvolvimento Embrionário , Feminino , Fator 10 de Crescimento de Fibroblastos/biossíntese , Fator 10 de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genitália/metabolismo , Proteínas com Homeodomínio LIM/biossíntese , Proteínas com Homeodomínio LIM/metabolismo , Masculino , Mesoderma/embriologia , Mesoderma/metabolismo , Camundongos , Camundongos Knockout , Organogênese/genética , Transdução de Sinais , Fatores de Transcrição/biossíntese , Fatores de Transcrição/metabolismo , Anormalidades Urogenitais/genética , Anormalidades Urogenitais/metabolismo , Proteína Wnt-5a/biossíntese , Proteína Wnt-5a/metabolismo
2.
Development ; 141(13): 2611-20, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24924195

RESUMO

The transition between the proliferation and differentiation of progenitor cells is a key step in organogenesis, and alterations in this process can lead to developmental disorders. The extracellular signal-regulated kinase 1/2 (ERK) signaling pathway is one of the most intensively studied signaling mechanisms that regulates both proliferation and differentiation. How a single molecule (e.g. ERK) can regulate two opposing cellular outcomes is still a mystery. Using both chick and mouse models, we shed light on the mechanism responsible for the switch from proliferation to differentiation of head muscle progenitors and implicate ERK subcellular localization. Manipulation of the fibroblast growth factor (FGF)-ERK signaling pathway in chick embryos in vitro and in vivo demonstrated that blockage of this pathway accelerated myogenic differentiation, whereas its activation diminished it. We next examined whether the spatial subcellular localization of ERK could act as a switch between proliferation (nuclear ERK) and differentiation (cytoplasmic ERK) of muscle progenitors. A myristoylated peptide that blocks importin 7-mediated ERK nuclear translocation induced robust myogenic differentiation of muscle progenitor/stem cells in both head and trunk. In the mouse, analysis of Sprouty mutant embryos revealed that increased ERK signaling suppressed both head and trunk myogenesis. Our findings, corroborated by mathematical modeling, suggest that ERK shuttling between the nucleus and the cytoplasm provides a switch-like transition between proliferation and differentiation of muscle progenitors.


Assuntos
Diferenciação Celular/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Desenvolvimento Muscular/fisiologia , Células-Tronco/fisiologia , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Bromodesoxiuridina , Proliferação de Células , Embrião de Galinha , Primers do DNA/genética , Imunofluorescência , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Reação em Cadeia da Polimerase em Tempo Real
3.
Dev Biol ; 386(1): 1-11, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24361260

RESUMO

Development of the mammalian external genitalia is controlled by a network of signaling molecules and transcription factors. Because FGF signaling plays a central role in this complicated morphogenetic process, we investigated the role of Sprouty genes, which are important intracellular modulators of FGF signaling, during embryonic development of the external genitalia in mice. We found that Sprouty genes are expressed by the urethral epithelium during embryogenesis, and that they have a critical function during urethral canalization and fusion. Development of the genital tubercle (GT), the anlage of the prepuce and glans penis in males and glans clitoris in females, was severely affected in male embryos carrying null alleles of both Spry1 and Spry2. In Spry1(-/-);Spry2(-/-) embryos, the internal tubular urethra was absent, and urothelial morphology and organization was abnormal. These effects were due, in part, to elevated levels of epithelial cell proliferation in Spry1(-/-);Spry2(-/-) embryos. Despite changes in overall organization, terminal differentiation of the urothelium was not significantly affected. Characterization of the molecular pathways that regulate normal GT development confirmed that deletion of Sprouty genes leads to elevated FGF signaling, whereas levels of signaling in other cascades were largely preserved. Together, these results show that levels of FGF signaling must be tightly regulated during embryonic development of the external genitalia in mice, and that this regulation is mediated in part through the activity of Sprouty gene products.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Genitália/embriologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas de Membrana/fisiologia , Fosfoproteínas/fisiologia , Uretra/embriologia , Animais , Proliferação de Células , Feminino , Fatores de Crescimento de Fibroblastos/metabolismo , Deleção de Genes , Imuno-Histoquímica , Hibridização In Situ , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Fatores de Tempo , Urotélio/embriologia , Urotélio/metabolismo
4.
PLoS Genet ; 7(6): e1002098, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21655085

RESUMO

The sense of taste is fundamental to our ability to ingest nutritious substances and to detect and avoid potentially toxic ones. Sensory taste buds are housed in papillae that develop from epithelial placodes. Three distinct types of gustatory papillae reside on the rodent tongue: small fungiform papillae are found in the anterior tongue, whereas the posterior tongue contains the larger foliate papillae and a single midline circumvallate papilla (CVP). Despite the great variation in the number of CVPs in mammals, its importance in taste function, and its status as the largest of the taste papillae, very little is known about the development of this structure. Here, we report that a balance between Sprouty (Spry) genes and Fgf10, which respectively antagonize and activate receptor tyrosine kinase (RTK) signaling, regulates the number of CVPs. Deletion of Spry2 alone resulted in duplication of the CVP as a result of an increase in the size of the placode progenitor field, and Spry1(-/-);Spry2(-/-) embryos had multiple CVPs, demonstrating the redundancy of Sprouty genes in regulating the progenitor field size. By contrast, deletion of Fgf10 led to absence of the CVP, identifying FGF10 as the first inductive, mesenchyme-derived factor for taste papillae. Our results provide the first demonstration of the role of epithelial-mesenchymal FGF signaling in taste papilla development, indicate that regulation of the progenitor field size by FGF signaling is a critical determinant of papilla number, and suggest that the great variation in CVP number among mammalian species may be linked to levels of signaling by the FGF pathway.


Assuntos
Fator 10 de Crescimento de Fibroblastos/genética , Fator 10 de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Células-Tronco/citologia , Papilas Gustativas/embriologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Embrião de Mamíferos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinases , Paladar/fisiologia , Papilas Gustativas/citologia
5.
Genesis ; 47(9): 628-37, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19536807

RESUMO

Development of the mammalian adrenal gland is regulated by a diverse network of growth and transcription factors. Disruptions in these pathways often result in adrenal insufficiency because of adrenal hypoplasia. Several lines of evidence have suggested that the Hedgehog signaling pathway, which controls many aspects of tissue and organ patterning, may play a direct role in adrenal morphogenesis as well. Therefore, we examined the role of Sonic Hedgehog (Shh), a member of the Hedgehog family, in mouse adrenal development. We show that Shh and its downstream effectors Gli1, Gli2, and Gli3 are expressed in the adrenal cortex throughout development, and that Shh is required for normal adrenal organogenesis. Conditional inactivation of Shh in the adrenal cortex using a Cre-loxP system resulted in severe hypoplasia and disorganization of the cortex. In mice carrying the targeted mutation (Shh(fl/fl;SF-1/Cre+)), adrenal mass was significantly reduced and the cortex failed to encapsulate the adrenal medulla. Taken together, these results establish a direct role for Shh signaling in normal adrenal development.


Assuntos
Córtex Suprarrenal/crescimento & desenvolvimento , Proteínas Hedgehog/metabolismo , Organogênese/fisiologia , Transdução de Sinais/fisiologia , Córtex Suprarrenal/metabolismo , Animais , Primers do DNA/genética , Inativação Gênica , Proteínas Hedgehog/genética , Imuno-Histoquímica , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Proteínas Oncogênicas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transativadores/metabolismo , Proteína GLI1 em Dedos de Zinco , Proteína Gli2 com Dedos de Zinco , Proteína Gli3 com Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA