Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Chemphyschem ; 24(1): e202200390, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36002385

RESUMO

Advances in flexible electronic devices and robotic software require that sensors and controllers be virtually devoid of traditional electronic components, be deformable and stretch-resistant. Liquid electronic devices that mimic biological synapses would make an ideal core component for flexible liquid circuits. This is due to their unbeatable features such as flexibility, reconfiguration, fault tolerance. To mimic synaptic functions in fluids we need to imitate dynamics and complexity similar to those that occurring in living systems. Mimicking ionic movements are considered as the simplest platform for implementation of neuromorphic in material computing systems. We overview a series of experimental laboratory prototypes where neuromorphic systems are implemented in liquids, colloids and gels.


Assuntos
Eletrônica , Robótica , Sinapses , Coloides , Géis
2.
Soft Matter ; 16(6): 1455-1462, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31976998

RESUMO

A room temperature liquid metal features a melting point around room temperature. We use liquid metal gallium due to its non-toxicity. A physical maze is a connected set of Euclidean domains separated by impassable walls. We demonstrate that a maze filled with sodium hydroxide solution is solved by a gallium droplet when direct current is applied between start and destination loci. During the maze solving the droplet stays compact due to its large surface tension, navigates along lines of the highest electrical current density due its high electrical conductivity, and goes around corners of the maze's corridors due to its high conformability. The droplet maze solver has a long life-time due to the negligible vapour tension of liquid gallium and its corrosion resistance and its operation enables computational schemes based on liquid state devices.

3.
Nanotechnology ; 29(49): 495201, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30234499

RESUMO

This work reports the fabrication of memristive devices based on iron oxide (Fe2O3) thin films grown by atomic layer deposition (ALD) using ferrocene as iron precursor and ozone as oxidant. An excellent control of the ALD process was achieved by using an experimental procedure based on a sequence of micro-pulses, which provided long residence time and homogeneous diffusion of precursors, allowing ALD of thin films with smooth morphology and crystallinity which was found to increase with layer thickness, at temperatures as low as 250 °C. The resistive switching of symmetric Pt/Fe2O3/Pt thin film devices exhibited bipolar mode with good stability and endurance. Multi-level switching was achieved via current and voltage control. It was proved that the ON state regime can be tuned by changing the current compliance while the OFF state can be changed to intermediate levels by decreasing the maximum voltage during RESET. The structural analysis of the switched oxide layer revealed the presence of nano-sized crystalline domains corresponding to different iron oxide phases, suggesting that Joule heating effects during I-V cycling are responsible for a crystallization process of the pristine amorphous layer.

4.
Sensors (Basel) ; 18(2)2018 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-29382050

RESUMO

A recent trend in the development of high mass consumption electron devices is towards electronic textiles (e-textiles), smart wearable devices, smart clothes, and flexible or printable electronics. Intrinsically soft, stretchable, flexible, Wearable Memories and Computing devices (WMCs) bring us closer to sci-fi scenarios, where future electronic systems are totally integrated in our everyday outfits and help us in achieving a higher comfort level, interacting for us with other digital devices such as smartphones and domotics, or with analog devices, such as our brain/peripheral nervous system. WMC will enable each of us to contribute to open and big data systems as individual nodes, providing real-time information about physical and environmental parameters (including air pollution monitoring, sound and light pollution, chemical or radioactive fallout alert, network availability, and so on). Furthermore, WMC could be directly connected to human brain and enable extremely fast operation and unprecedented interface complexity, directly mapping the continuous states available to biological systems. This review focuses on recent advances in nanotechnology and materials science and pays particular attention to any result and promising technology to enable intrinsically soft, stretchable, flexible WMC.


Assuntos
Dispositivos Eletrônicos Vestíveis , Humanos , Nanotecnologia , Compostos Orgânicos , Têxteis
5.
Nanotechnology ; 27(48): 485208, 2016 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-27819794

RESUMO

This work investigates titanium dioxide nanotube arrays (TiO2-NTA) grown by anodic oxidation as an active material for memristive applications. In particular, metal-insulator-metal structures made of vertically oriented amorphous TiO2-NTA grown on titanium foil were exploited in Ti/TiO2-NTA/Pt devices. The deposition of a polymeric thin film between NTA and top electrodes significantly improved the stability of the devices and increased by more than double the off/on resistance ratio. The resistive switching of TiO2-NTA samples crystallised by thermal annealing was also studied. Such devices displayed nonlinear I-V curves characterised by a smooth rectifying behaviour, without any evident resistive switching (RS). Also in this case, the interposition of the polymeric layer enhanced the RS behaviour of TiO2-NTA samples, remarkably increasing the devices' off/on ratio and endurance. The rise of high resistance states can be simply related to the addition of the polymer as resistance in series, while the variation of the low resistance states is here attributed to the occurrence of surface chemical reactions between polymer functional groups and the metal oxide, which increase the charge carriers available for conduction.

6.
Macromol Rapid Commun ; 35(3): 355-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24375728

RESUMO

A new approach is reported for the preparation of a graphene-epoxy flexible transparent capacitor obtained by graphene-polymer transfer and UV-induced bonding. SU8 resin is employed for realizing a well-adherent, transparent, and flexible supporting layer. The achieved transparent graphene/SU8 membrane presents two distinct surfaces: one homogeneous conductive surface containing a graphene layer and one dielectric surface typical of the epoxy polymer. Two graphene/SU8 layers are bonded together by using an epoxy photocurable formulation based on epoxy resin. The obtained material showed a stable and clear capacitive behavior.


Assuntos
Compostos de Epóxi/química , Grafite/química , Polímeros/química , Condutividade Elétrica , Propriedades de Superfície , Raios Ultravioleta
7.
Sensors (Basel) ; 14(7): 11957-92, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-25004153

RESUMO

Electronic Textiles (e-textiles) are fabrics that feature electronics and interconnections woven into them, presenting physical flexibility and typical size that cannot be achieved with other existing electronic manufacturing techniques. Components and interconnections are intrinsic to the fabric and thus are less visible and not susceptible of becoming tangled or snagged by surrounding objects. E-textiles can also more easily adapt to fast changes in the computational and sensing requirements of any specific application, this one representing a useful feature for power management and context awareness. The vision behind wearable computing foresees future electronic systems to be an integral part of our everyday outfits. Such electronic devices have to meet special requirements concerning wearability. Wearable systems will be characterized by their ability to automatically recognize the activity and the behavioral status of their own user as well as of the situation around her/him, and to use this information to adjust the systems' configuration and functionality. This review focuses on recent advances in the field of Smart Textiles and pays particular attention to the materials and their manufacturing process. Each technique shows advantages and disadvantages and our aim is to highlight a possible trade-off between flexibility, ergonomics, low power consumption, integration and eventually autonomy.

8.
ACS Omega ; 9(28): 30308-30320, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39035971

RESUMO

Kombucha is a type of tea that is fermented using yeast and bacteria. During this process, a film made of cellulose is produced. This film has unique properties such as biodegradability, flexibility, shape conformability, and ability to self-grow as well as be produced across customized scales. In our previous studies, we demonstrated that Kombucha mats exhibit electrical activity represented by spikes of the electrical potential. We propose using microbial fermentation as a method for in situ functionalization to modulate the electroactive nature of Kombucha cellulose mats, where graphene and zeolite were used for the functionalization. We subjected the pure and functionalized Kombucha mats to mechanical stimulation by applying different weights and geometries. Our experiments demonstrated that Kombucha mats functionalized with graphene and zeolite exhibit memfractive properties and respond to load by producing distinctive spiking patterns. Our findings present incredible opportunities for the in situ development of functionalized hybrid materials with sensing, computing, and memory capabilities. These materials can self-assemble and self-grow after they fuse their living and synthetic components. This study contributes to an emergent area of research on bioelectronic sensing and hybrid living materials, opening up exciting opportunities for use in smart wearables, diagnostics, health monitoring, and energy harvesting applications.

9.
R Soc Open Sci ; 11(5): 231939, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-39076794

RESUMO

Colloid-based computing devices offer remarkable fault tolerance and adaptability to varying environmental conditions due to their amorphous structure. An intriguing observation is that a colloidal suspension of ZnO nanoparticles in dimethylsulfoxide (DMSO) exhibits reconfiguration when exposed to electrical stimulation and produces spikes of electrical potential in response. This study presents a novel laboratory prototype of a ZnO colloidal computer, showcasing its capability to implement various Boolean functions featuring two, four and eight inputs. During our experiments, we input binary strings into the colloid mixture, where a logical 'True' state is represented by an impulse of an electrical potential. In contrast, the absence of the electrical impulse denotes a logical 'False' state. The electrical responses of the colloid mixture are recorded, allowing us to extract truth tables from the recordings. Through this methodological approach, we demonstrate the successful implementation of a wide range of logical functions using colloidal mixtures. We provide detailed distributions of the logical functions discovered and offer speculation on the potential impacts of our findings on future and emerging unconventional computing technologies. This research highlights the exciting possibilities of colloid-based computing and paves the way for further advancements.

10.
ACS Appl Mater Interfaces ; 15(43): 50106-50115, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37853519

RESUMO

In situ energy generation in soft, flexible, autonomous devices is challenging due to the need for highly stretchable and fault-resistant components. Nanofluids with pyro-, tribo-, or thermoelectric properties have recently emerged as promising solutions for realizing liquid-based energy harvesters. Yet, large thermal gradients are required for the efficient performance of these systems. In this work, we show that oil-based plasmonic nanofluids uniquely combine high photothermal efficiency with strong heat localization. In particular, we report that oleic acid-based nanofluids containing TiN nanoclusters (0.3 wt %) exhibit 89% photothermal efficiency and can realize thermal gradients as large as 15.5 K/cm under solar irradiation. We experimentally and numerically investigate the photothermal behavior of the nanofluid as a function of solid fraction concentration and irradiation wavelength, clarifying the interplay of thermal and optical properties and demonstrating a dramatic improvement compared with water-based nanofluids. Overall, these results open unprecedented opportunities for the development of liquid-based energy generation systems for soft, stand-alone devices.

11.
Biomimetics (Basel) ; 8(1)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36975352

RESUMO

The in situ measurement of the bioelectric potential in xilematic and floematic superior plants reveals valuable insights into the biological activity of these organisms, including their responses to lunar and solar cycles and collective behaviour. This paper reports on the "Cyberforest Experiment" conducted in the open-air Paneveggio forest in Valle di Fiemme, Trento, Italy, where spruce (i.e., Picea abies) is cultivated. Our analysis of the bioelectric potentials reveals a strong correlation between higher-order complexity measurements and thermodynamic entropy and suggests that bioelectrical signals can reflect the metabolic activity of plants. Additionally, temporal correlations of bioelectric signals from different trees may be precisely synchronized or may lag behind. These correlations are further explored through the lens of quantum field theory, suggesting that the forest can be viewed as a collective array of in-phase elements whose correlation is naturally tuned depending on the environmental conditions. These results provide compelling evidence for the potential of living plant ecosystems as environmental sensors.

12.
Adv Mater ; 35(23): e2211406, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36919899

RESUMO

Magnetic fluids are excellent candidates for several important research fields including energy harvesting, biomedical applications, soft robotics, and exploration. However, notwithstanding relevant advancements such as shape reconfigurability, that have been demonstrated, there is no evidence for their computing capability, including the emulation of synaptic functions, which requires complex non-linear dynamics. Here, it is experimentally demonstrated that a Fe3 O4 water-based ferrofluid (FF) can perform electrical analogue computing and be programmed using quasi direct current (DC) signals and read at radio frequency (RF) mode. Features have been observed in all respects attributable to a memristive behavior, featuring both short and long-term information storage capacity and plasticity. The colloid is capable of classifying digits of a 8 × 8 pixel dataset using a custom in-memory signal processing scheme, and through physical reservoir computing by training a readout layer. These findings demonstrate the feasibility of in-memory computing using an amorphous FF system in a liquid aggregation state. This work poses the basis for the exploitation of a FF colloid as both an in-memory computing device and as a full-electric liquid computer thanks to its fluidity and the reported complex dynamics, via probing read-out and programming ports.

13.
Sci Rep ; 13(1): 8635, 2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37244978

RESUMO

Oscillation of physical parameters in materials can result in a peak signal in the frequency spectrum of the voltage measured from the materials. This spectrum and its amplitude/frequency tunability, through the application of bias voltage or current, can be used to perform neuron-like cognitive tasks. Magnetic materials, after achieving broad distribution for data storage applications in classical Von Neumann computer architectures, are under intense investigation for their neuromorphic computing capabilities. A recent successful demonstration regards magnetisation oscillation in magnetic thin films by spin transfer or spin orbit torques accompanied by magnetoresistance (MR) effect that can give a voltage peak in the frequency spectrum of voltage with bias current dependence of both peak frequency and amplitude. Here we use classical magnetoimpedance (MI) effect in a magnetic wire to produce such a peak and manipulate its frequency and amplitude by means of the bias voltage. We applied a noise signal to a magnetic wire with high magnetic permeability and owing to the frequency dependence of the magnetic permeability we got frequency dependent impedance with a peak at the maximum permeability. Frequency dependence of the MI effect results in different changes in the voltage amplitude at each frequency when a bias voltage is applied and therefore a shift in the peak position and amplitude can be obtained. The presented method and material provide optimal features in structural simplicity, low-frequency operation (tens of MHz-order) and high robustness at different environmental conditions. Our universal approach can be applied to any system with frequency dependent bias responses.

14.
Sci Rep ; 13(1): 9367, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37296164

RESUMO

A kombucha is a tea and sugar fermented by over sixty kinds of yeasts and bacteria. This symbiotic community produces kombucha mats, which are cellulose-based hydrogels. The kombucha mats can be used as an alternative to animal leather in industry and fashion once they have been dried and cured. Prior to this study, we demonstrated that living kombucha mats display dynamic electrical activity and distinct stimulating responses. For use in organic textiles, cured mats of kombucha are inert. To make kombucha wearables functional, it is necessary to incorporate electrical circuits. We demonstrate that creating electrical conductors on kombucha mats is possible. After repeated bending and stretching, the circuits maintain their functionality. In addition, the abilities and electronic properties of the proposed kombucha, such as being lighter, less expensive, and more flexible than conventional electronic systems, pave the way for their use in a diverse range of applications.


Assuntos
Bactérias , Leveduras , Animais , Fermentação , Chá/microbiologia
15.
Biosystems ; 218: 104691, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35595195

RESUMO

A reactive bacterial glove is a cotton glove colonised by Acetobacter aceti, an example of biofabrication of a living electronic sensing device. The bacterial colony, supported by a cellulose-based hydrogel, forms a several millimetres-thick living coating on the surface of the glove. This paper proposes a novel method for analysing the complex electrical activity of trains of spikes generated by a living colony. The proposed method, which primarily focuses on dynamic entropy analysis, shows that the bacterial glove responds to mechanical triaxial stimuli by producing travelling patterns of electrical activity. Kolmogorov complexity further supports our investigation into the evolution of dynamic patterns of such waves in the hydrogel and shows how stimuli initiate electrical activity waves across the glove. These waves are diffractive and ultimately are suppressed by depression. Our experiments demonstrate that living substrates could be used to enable reactive sensing wearable by means of living colonies of bacteria, once the paradigm of excitation wave propagation and reflection is implemented.


Assuntos
Mãos , Dispositivos Eletrônicos Vestíveis , Bactérias , Mãos/microbiologia , Hidrogéis
16.
Biosystems ; 222: 104797, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36334806

RESUMO

We stimulate mycelian networks of oyster fungi Pleurotus ostreatus with low frequency sinusoidal electrical signals. We demonstrate that the fungal networks can discriminate between frequencies in a fuzzy or threshold based manner. Details about the mixing of frequencies by the mycelium networks are provided. The results advance the novel field of fungal electronics and pave ground for the design of living, fully recyclable, electronic devices.


Assuntos
Pleurotus , Micélio
17.
Biosystems ; 212: 104588, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34979157

RESUMO

Fungal electronics is a family of living electronic devices made of mycelium bound composites or pure mycelium. Fungal electronic devices are capable of changing their impedance and generating spikes of electrical potential in response to external control parameters. Fungal electronics can be embedded into fungal materials and wearables or used as stand alone sensing and computing devices.


Assuntos
Eletrônica , Fungos , Fungos/fisiologia , Micélio
18.
ACS Biomater Sci Eng ; 7(4): 1651-1662, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33780232

RESUMO

The bacterial skin studied here is a several centimeter-wide colony of Acetobacter aceti living on a cellulose-based hydrogel. We demonstrate that the colony exhibits trains of spikes of extracellular electrical potential, with amplitudes of the spikes varying from 1 to 17 mV. The bacterial pad responds to mechanical stimulation with distinctive changes in its electrical activity. While studying the passive electrical properties of the bacterial pad, we found that the pad provides an open-circuit voltage drop (between 7 and 25 mV) and a small short-circuit current (1.5-4 nA). We also observed by pulsed tomography and spatially resolved impedance spectroscopy that the conduction occurs along preferential paths, with the peculiar side-effect of having a higher resistance between closer electrodes. We speculate that the Acetobacter biofilms could be utilized in the development of living skin for soft robots: such skin will act as an electrochemical battery and a reactive tactile sensor. It could even be used for wearable devices.


Assuntos
Acetobacter , Dispositivos Eletrônicos Vestíveis , Biofilmes , Eletrônica
19.
Fungal Biol Biotechnol ; 8(1): 3, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731205

RESUMO

BACKGROUND: A fungal skin is a thin flexible sheet of a living homogeneous mycelium made by a filamentous fungus. The skin could be used in future living architectures of adaptive buildings and as a sensing living skin for soft self-growing/adaptive robots. RESULTS: In experimental laboratory studies we demonstrate that the fungal skin is capable for recognising mechanical and optical stimulation. The skin reacts differently to loading of a weight, removal of the weight, and switching illumination on and off. CONCLUSION: These are the first experimental evidences that fungal materials can be used not only as mechanical 'skeletons' in architecture and robotics but also as intelligent skins capable for recognition of external stimuli and sensorial fusion.

20.
Fungal Biol Biotechnol ; 8(1): 6, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980304

RESUMO

A fungal skin is a thin flexible sheet of a living homogeneous mycelium made by a filamentous fungus. The skin could be used in future living architectures of adaptive buildings and as a sensing living skin for soft self-growing/adaptive robots. In experimental laboratory studies we demonstrate that the fungal skin is capable for recognising mechanical and optical stimulation. The skin reacts differently to loading of a weight, removal of the weight, and switching illumination on and off. These are the first experimental evidences that fungal materials can be used not only as mechanical 'skeletons' in architecture and robotics but also as intelligent skins capable for recognition of external stimuli and sensorial fusion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA