Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microbiology (Reading) ; 169(7)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37418300

RESUMO

Widespread antibiotic resistance in commensal bacteria creates a persistent challenge for human health. Resident drug-resistant microbes can prevent clinical interventions, colonize wounds post-surgery, pass resistance traits to pathogens or move to more harmful niches following routine interventions such as catheterization. Accelerating the removal of resistant bacteria or actively decolonizing particular lineages from hosts could therefore have a number of long-term benefits. However, removing resident bacteria via competition with probiotics, for example, poses a number of ecological challenges. Resident microbes are likely to have physiological and numerical advantages and competition based on bacteriocins or other secreted antagonists is expected to give advantages to the dominant partner, via positive frequency dependence. Since a narrow range of Escherichia coli genotypes (primarily those belonging to the clonal group ST131) cause a significant proportion of multidrug-resistant infections, this group presents a promising target for decolonization with bacteriophage, as narrow-host-range viral predation could lead to selective removal of particular genotypes. In this study we tested how a combination of an ST131-specific phage and competition from the well-known probiotic E. coli Nissle strain could displace E. coli ST131 under aerobic and anaerobic growth conditions in vitro. We showed that the addition of phage was able to break the frequency-dependent advantage of a numerically dominant ST131 isolate. Moreover, the addition of competing E. coli Nissle could improve the ability of phage to suppress ST131 by two orders of magnitude. Low-cost phage resistance evolved readily in these experiments and was not inhibited by the presence of a probiotic competitor. Nevertheless, combinations of phage and probiotic produced stable long-term suppression of ST131 over multiple transfers and under both aerobic and anaerobic growth conditions. Combinations of phage and probiotic therefore have real potential for accelerating the removal of drug-resistant commensal targets.


Assuntos
Bacteriófagos , Infecções por Escherichia coli , Probióticos , Humanos , Escherichia coli/fisiologia , Infecções por Escherichia coli/microbiologia , Bacteriófagos/genética , Farmacorresistência Bacteriana Múltipla/genética , Antibacterianos/farmacologia
2.
ISME J ; 15(8): 2465-2473, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33692485

RESUMO

Quorum sensing controls the expression of a wide range of important traits in the opportunistic pathogen Pseudomonas aeruginosa, including the expression of virulence genes and its CRISPR-cas immune system, which protects from bacteriophage (phage) infection. This finding has led to the speculation that synthetic quorum sensing inhibitors could be used to limit the evolution of CRISPR immunity during phage therapy. Here we use experimental evolution to explore if and how a quorum sensing inhibitor influences the population and evolutionary dynamics of P. aeruginosa upon phage DMS3vir infection. We find that chemical inhibition of quorum sensing decreases phage adsorption rates due to downregulation of the Type IV pilus, which causes delayed lysis of bacterial cultures and favours the evolution of CRISPR immunity. Our data therefore suggest that inhibiting quorum sensing may reduce rather than improve the therapeutic efficacy of pilus-specific phage, and this is likely a general feature when phage receptors are positively regulated by quorum sensing.


Assuntos
Bacteriófagos , Pseudomonas aeruginosa , Bacteriófagos/genética , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Pseudomonas aeruginosa/genética , Percepção de Quorum
3.
Trends Plant Sci ; 21(4): 317-328, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26684391

RESUMO

Small open reading frames (sORFs) are an often overlooked feature of plant genomes. Initially found in plant viral RNAs and considered an interesting curiosity, an increasing number of these sORFs have been shown to encode functional peptides or play a regulatory role. The recent discovery that many of these sORFs initiate with start codons other than AUG, together with the identification of functional small peptides encoded in supposedly noncoding primary miRNA transcripts (pri-miRs), has drastically increased the number of potentially functional sORFs within the genome. Here we review how advances in technology, notably ribosome profiling (RP) assays, are complementing bioinformatics and proteogenomic methods to provide powerful ways to identify these elusive features of plant genomes, and highlight the regulatory roles sORFs can play.


Assuntos
Genoma de Planta/genética , Fases de Leitura Aberta/genética , Peptídeos/genética , Plantas/genética , Ribossomos/genética , Códon/genética , Biologia Computacional , Regulação da Expressão Gênica de Plantas , RNA de Plantas/genética , RNA Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA