Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 175(5): 1352-1364.e14, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30415841

RESUMO

Hedgehog protein signals mediate tissue patterning and maintenance by binding to and inactivating their common receptor Patched, a 12-transmembrane protein that otherwise would suppress the activity of the 7-transmembrane protein Smoothened. Loss of Patched function, the most common cause of basal cell carcinoma, permits unregulated activation of Smoothened and of the Hedgehog pathway. A cryo-EM structure of the Patched protein reveals striking transmembrane domain similarities to prokaryotic RND transporters. A central hydrophobic conduit with cholesterol-like contents courses through the extracellular domain and resembles that used by other RND proteins to transport substrates, suggesting Patched activity in cholesterol transport. Cholesterol activity in the inner leaflet of the plasma membrane is reduced by PTCH1 expression but rapidly restored by Hedgehog stimulation, suggesting that PTCH1 regulates Smoothened by controlling cholesterol availability.


Assuntos
Colesterol/metabolismo , Proteínas Hedgehog/metabolismo , Receptor Patched-1/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Microscopia Crioeletrônica , Dimerização , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Evolução Molecular , Células HEK293 , Proteínas Hedgehog/química , Proteínas Hedgehog/genética , Humanos , Camundongos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Receptor Patched-1/química , Receptor Patched-1/genética , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência , Transdução de Sinais
2.
Mol Cell ; 71(6): 1092-1104.e5, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30174291

RESUMO

Activation of class I phosphatidylinositol 3-kinase (PI3K) leads to formation of phosphatidylinositol-3,4,5-trisphophate (PIP3) and phosphatidylinositol-3,4-bisphophate (PI34P2), which spatiotemporally coordinate and regulate a myriad of cellular processes. By simultaneous quantitative imaging of PIP3 and PI34P2 in live cells, we here show that they have a distinctively different spatiotemporal distribution and history in response to growth factor stimulation, which allows them to selectively induce the membrane recruitment and activation of Akt isoforms. PI34P2 selectively activates Akt2 at both the plasma membrane and early endosomes, whereas PIP3 selectively stimulates Akt1 and Akt3 exclusively at the plasma membrane. These spatiotemporally distinct activation patterns of Akt isoforms provide a mechanism for their differential regulation of downstream signaling molecules. Collectively, our studies show that different spatiotemporal dynamics of PIP3 and PI34P2 and their ability to selectively activate key signaling proteins allow them to mediate class I PI3K signaling pathways in a spatiotemporally specific manner.


Assuntos
Imagem Óptica/métodos , Fosfatos de Fosfatidilinositol/fisiologia , Imagem Individual de Molécula/métodos , Animais , Linhagem Celular , Membrana Celular , Humanos , Fosfatos de Inositol , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/fisiologia , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositóis , Isoformas de Proteínas , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
3.
Nat Chem Biol ; 19(2): 239-250, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36229686

RESUMO

Membrane lipids control the cellular activity of kinases containing the Src homology 2 (SH2) domain through direct lipid-SH2 domain interactions. Here we report development of new nonlipidic small molecule inhibitors of the lipid-SH2 domain interaction that block the cellular activity of their host proteins. As a pilot study, we evaluated the efficacy of lipid-SH2 domain interaction inhibitors for spleen tyrosine kinase (Syk), which is implicated in hematopoietic malignancies, including acute myeloid leukemia (AML). An optimized inhibitor (WC36) specifically and potently suppressed oncogenic activities of Syk in AML cell lines and patient-derived AML cells. Unlike ATP-competitive Syk inhibitors, WC36 was refractory to de novo and acquired drug resistance due to its ability to block not only the Syk kinase activity, but also its noncatalytic scaffolding function that is linked to drug resistance. Collectively, our study shows that targeting lipid-protein interaction is a powerful approach to developing new small molecule drugs.


Assuntos
Leucemia Mieloide Aguda , Proteínas Tirosina Quinases , Humanos , Proteínas Tirosina Quinases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Projetos Piloto , Domínios de Homologia de src , Fosforilação , Leucemia Mieloide Aguda/tratamento farmacológico , Lipídeos , Quinase Syk/metabolismo
4.
Mol Cell ; 62(1): 7-20, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27052731

RESUMO

The Src-homology 2 (SH2) domain is a protein interaction domain that directs myriad phosphotyrosine (pY)-signaling pathways. Genome-wide screening of human SH2 domains reveals that ∼90% of SH2 domains bind plasma membrane lipids and many have high phosphoinositide specificity. They bind lipids using surface cationic patches separate from pY-binding pockets, thus binding lipids and the pY motif independently. The patches form grooves for specific lipid headgroup recognition or flat surfaces for non-specific membrane binding and both types of interaction are important for cellular function and regulation of SH2 domain-containing proteins. Cellular studies with ZAP70 showed that multiple lipids bind its C-terminal SH2 domain in a spatiotemporally specific manner and thereby exert exquisite spatiotemporal control over its protein binding and signaling activities in T cells. Collectively, this study reveals how lipids control SH2 domain-mediated cellular protein-protein interaction networks and suggest a new strategy for therapeutic modulation of pY-signaling pathways.


Assuntos
Metabolismo dos Lipídeos , Linfócitos T/metabolismo , Proteína-Tirosina Quinase ZAP-70/química , Proteína-Tirosina Quinase ZAP-70/metabolismo , Domínios de Homologia de src , Sítios de Ligação , Células Cultivadas , Humanos , Células Jurkat , Modelos Moleculares , Simulação de Acoplamento Molecular , Fosfotirosina/efeitos dos fármacos , Fosfotirosina/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Transdução de Sinais
5.
Proc Natl Acad Sci U S A ; 117(46): 28838-28846, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33139559

RESUMO

Activation of the Hedgehog pathway may have therapeutic value for improved bone healing, taste receptor cell regeneration, and alleviation of colitis or other conditions. Systemic pathway activation, however, may be detrimental, and agents amenable to tissue targeting for therapeutic application have been lacking. We have developed an agonist, a conformation-specific nanobody against the Hedgehog receptor Patched1 (PTCH1). This nanobody potently activates the Hedgehog pathway in vitro and in vivo by stabilizing an alternative conformation of a Patched1 "switch helix," as revealed by our cryogenic electron microscopy structure. Nanobody-binding likely traps Patched in one stage of its transport cycle, thus preventing substrate movement through the Patched1 sterol conduit. Unlike the native Hedgehog ligand, this nanobody does not require lipid modifications for its activity, facilitating mechanistic studies of Hedgehog pathway activation and the engineering of pathway activating agents for therapeutic use. Our conformation-selective nanobody approach may be generally applicable to the study of other PTCH1 homologs.


Assuntos
Receptor Patched-1/agonistas , Receptor Patched-1/metabolismo , Receptor Patched-1/ultraestrutura , Animais , Microscopia Crioeletrônica/métodos , Proteínas Hedgehog/metabolismo , Humanos , Receptores Patched/metabolismo , Transdução de Sinais/fisiologia , Anticorpos de Domínio Único/farmacologia
6.
J Lipid Res ; 63(3): 100178, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35143844

RESUMO

Cholesterol is an essential component of mammalian cell membranes whose subcellular concentration and function are tightly regulated by de novo biosynthesis, transport, and storage. Although recent reports have suggested diverse functions of cellular cholesterol in different subcellular membranes, systematic investigation of its site-specific roles has been hampered by the lack of a methodology for spatiotemporal manipulation of cellular cholesterol levels. Here, we report the development of a new cholesterol depletion system that allows for spatiotemporal manipulation of intracellular cholesterol levels. This system utilizes a genetically encoded cholesterol oxidase whose intrinsic membrane binding activity is engineered in such a way that its membrane targeting can be controlled in a spatiotemporally specific manner via chemically induced dimerization. In combination with in situ quantitative imaging of cholesterol and signaling activity measurements, this system allows for unambiguous determination of site-specific functions of cholesterol in different membranes, including the plasma membrane and the lysosomal membrane.


Assuntos
Colesterol , Lisossomos , Animais , Membrana Celular/metabolismo , Colesterol/metabolismo , Endossomos/metabolismo , Membranas Intracelulares/metabolismo , Lisossomos/metabolismo , Mamíferos/metabolismo
7.
J Biol Chem ; 297(5): 101303, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34655614

RESUMO

As a central player in the canonical TGF-ß signaling pathway, Smad2 transmits the activation of TGF-ß receptors at the plasma membrane (PM) to transcriptional regulation in the nucleus. Although it has been well established that binding of TGF-ß to its receptors leads to the recruitment and activation of Smad2, the spatiotemporal mechanism by which Smad2 is recruited to the activated TGF-ß receptor complex and activated is not fully understood. Here we show that Smad2 selectively and tightly binds phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) in the PM. The PI(4,5)P2-binding site is located in the MH2 domain that is involved in interaction with the TGF-ß receptor I that transduces TGF-ß-receptor binding to downstream signaling proteins. Quantitative optical imaging analyses show that PM recruitment of Smad2 is triggered by its interaction with PI(4,5)P2 that is locally enriched near the activated TGF-ß receptor complex, leading to its binding to the TGF-ß receptor I. The PI(4,5)P2-binding activity of Smad2 is essential for the TGF-ß-stimulated phosphorylation, nuclear transport, and transcriptional activity of Smad2. Structural comparison of all Smad MH2 domains suggests that membrane lipids may also interact with other Smad proteins and regulate their function in diverse TGF-ß-mediated biological processes.


Assuntos
Fosfatidilinositol 4,5-Difosfato/metabolismo , Transdução de Sinais , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Transporte Ativo do Núcleo Celular , Células HeLa , Humanos , Fosfatidilinositol 4,5-Difosfato/genética , Ligação Proteica , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Proteína Smad2/genética , Fator de Crescimento Transformador beta/genética
8.
J Lipid Res ; 62: 100084, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33964305

RESUMO

Cholesterol is an essential component of the mammalian plasma membrane involved in diverse cellular processes. Our recent quantitative imaging analysis using ratiometric cholesterol sensors showed that the available cholesterol concentration in the inner leaflet of the plasma membrane (IPM) is low in unstimulated cells and increased in a stimulus-specific manner to trigger cell signaling events. However, the transbilayer distribution of cholesterol in the plasma membrane of mammalian cells remains controversial. Here we report a systematic and rigorous evaluation of basal IPM cholesterol levels in a wide range of mammalian cells with different properties employing cholesterol sensors derived from the D4 domain of the Perfringolysin O toxin and a sterol-transfer protein, Osh4. Results consistently showed that, although basal IPM cholesterol levels vary significantly among cells, they remain significantly lower than cholesterol levels in the outer leaflets. We found that IPM cholesterol levels were particularly low in all tested primary cells. These results support the universality of the low basal IPM cholesterol concentration under physiological conditions. We also report here the presence of sequestered IPM cholesterol pools, which may become available to cytosolic proteins under certain physiological conditions. We hypothesize that these pools may partly account for the low basal level of available IPM cholesterol. In conclusion, we provide new experimental data that confirm the asymmetric transbilayer distribution of the plasma membrane cholesterol, which may contribute to regulation of various cellular signaling processes at the plasma membrane.


Assuntos
Membrana Celular
9.
FASEB J ; 34(11): 14671-14694, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32914503

RESUMO

Oxysterol-binding protein-related protein 2 (ORP2), a cholesterol-PI(4,5)P2 countercurrent transporter, was recently identified as a novel regulator of plasma membrane (PM) cholesterol and PI(4,5)P2 content in HeLa cells. Here, we investigate the role of ORP2 in endothelial cell (EC) cholesterol and PI(4,5)P2 distribution, angiogenic signaling, and angiogenesis. We show that ORP2 knock-down modifies the distribution of cholesterol accessible to a D4H probe, between late endosomes and the PM. Depletion of ORP2 from ECs inhibits their angiogenic tube formation capacity, alters the gene expression of angiogenic signaling pathways such as VEGFR2, Akt, mTOR, eNOS, and Notch, and reduces EC migration, proliferation, and cell viability. We show that ORP2 regulates the integrity of VEGFR2 at the PM in a cholesterol-dependent manner, the depletion of ORP2 resulting in proteolytic cleavage by matrix metalloproteinases, and reduced activity of VEGFR2 and its downstream signaling. We demonstrate that ORP2 depletion increases the PM PI(4,5)P2 coincident with altered F-actin morphology, and reduces both VEGFR2 and cholesterol in buoyant raft membranes. Moreover, ORP2 knock-down suppresses the expression of the lipid raft-associated proteins VE-cadherin and caveolin-1. Analysis of the retinal microvasculature in ORP2 knock-out mice generated during this study demonstrates the subtle alterations of morphology characterized by reduced vessel length and increased density of tip cells and perpendicular sprouts. Gene expression changes in the retina suggest disturbance of sterol homeostasis, downregulation of VE-cadherin, and a putative disturbance of Notch signaling. Our data identifies ORP2 as a novel regulator of EC cholesterol and PI(4,5)P2 homeostasis and cholesterol-dependent angiogenic signaling.


Assuntos
Células Endoteliais da Veia Umbilical Humana/metabolismo , Neovascularização Fisiológica , Receptores de Esteroides/metabolismo , Transdução de Sinais , Actinas/metabolismo , Antígenos CD/metabolismo , Caderinas/metabolismo , Caveolinas/metabolismo , Membrana Celular/metabolismo , Movimento Celular , Endossomos/metabolismo , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Metaloproteinases da Matriz/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Notch/metabolismo , Receptores de Esteroides/genética , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Serina-Treonina Quinases TOR/metabolismo
10.
J Lipid Res ; 61(6): 945-952, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32341006

RESUMO

Lipid kinases and phosphatases play key roles in cell signaling and regulation, are implicated in many human diseases, and are thus attractive targets for drug development. Currently, no direct in vitro activity assay is available for these important enzymes, which hampers mechanistic studies as well as high-throughput screening of small molecule modulators. Here, we report a highly sensitive and quantitative assay employing a ratiometric fluorescence sensor that directly and specifically monitors the real-time concentration change of a single lipid species. Because of its modular design, the assay system can be applied to a wide variety of lipid kinases and phosphatases, including class I phosphoinositide 3-kinase (PI3K) and phosphatase and tensin homolog (PTEN). When applied to PI3K, the assay provided detailed mechanistic information about the product inhibition and substrate acyl-chain selectivity of PI3K and enabled rapid evaluation of small molecule inhibitors. We also used this assay to quantitatively determine the substrate specificity of PTEN, providing new insight into its physiological function. In summary, we have developed a fluorescence-based real-time assay for PI3K and PTEN that we anticipate could be adapted to measure the activities of other lipid kinases and phosphatases with high sensitivity and accuracy.


Assuntos
Ensaios Enzimáticos/métodos , Fluorometria , Monoéster Fosfórico Hidrolases/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Especificidade por Substrato
11.
Plant Cell ; 29(6): 1388-1405, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28584166

RESUMO

During cytokinesis in plants, trans-Golgi network-derived vesicles accumulate at the center of dividing cells and undergo various structural changes to give rise to the planar cell plate. However, how this conversion occurs at the molecular level remains elusive. In this study, we report that SH3 Domain-Containing Protein 2 (SH3P2) in Arabidopsis thaliana plays a crucial role in converting vesicles to the planar cell plate. SH3P2 RNAi plants showed cytokinesis-defective phenotypes and produced aggregations of vesicles at the leading edge of the cell plate. SH3P2 localized to the leading edge of the cell plate, particularly the constricted or curved regions of the cell plate. The BAR domain of SH3P2 induced tubulation of vesicles. SH3P2 formed a complex with dynamin-related protein 1A (DRP1A) and affected DRP1A accumulation to the cell plate. Based on these results, we propose that SH3P2 functions together with DRP1A to convert the fused vesicles to tubular structures during cytokinesis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Transporte/genética , Citocinese/genética , Citocinese/fisiologia , Dinaminas/genética , Dinaminas/metabolismo , Plantas Geneticamente Modificadas/citologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Rede trans-Golgi/metabolismo , Rede trans-Golgi/fisiologia
12.
Mol Cell ; 46(2): 226-37, 2012 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-22445486

RESUMO

Emerging evidence indicates that membrane lipids regulate protein networking by directly interacting with protein-interaction domains (PIDs). As a pilot study to identify and functionally annodate lipid-binding PIDs on a genomic scale, we performed experimental and computational studies of PDZ domains. Characterization of 70 PDZ domains showed that ~40% had submicromolar membrane affinity. Using a computational model built from these data, we predicted the membrane-binding properties of 2,000 PDZ domains from 20 species. The accuracy of the prediction was experimentally validated for 26 PDZ domains. We also subdivided lipid-binding PDZ domains into three classes based on the interplay between membrane- and protein-binding sites. For different classes of PDZ domains, lipid binding regulates their protein interactions by different mechanisms. Functional studies of a PDZ domain protein, rhophilin 2, suggest that all classes of lipid-binding PDZ domains serve as genuine dual-specificity modules regulating protein interactions at the membrane under physiological conditions.


Assuntos
Simulação por Computador , Metabolismo dos Lipídeos , Domínios e Motivos de Interação entre Proteínas , Animais , Genoma , Humanos , Lipídeos/química , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Camundongos , Modelos Moleculares , Ratos , Ressonância de Plasmônio de Superfície
13.
Nat Chem Biol ; 13(3): 268-274, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28024150

RESUMO

Controlled distribution of lipids across various cell membranes is crucial for cell homeostasis and regulation. We developed an imaging method that allows simultaneous in situ quantification of cholesterol in two leaflets of the plasma membrane (PM) using tunable orthogonal cholesterol sensors. Our imaging revealed marked transbilayer asymmetry of PM cholesterol (TAPMC) in various mammalian cells, with the concentration in the inner leaflet (IPM) being ∼12-fold lower than that in the outer leaflet (OPM). The asymmetry was maintained by active transport of cholesterol from IPM to OPM and its chemical retention at OPM. Furthermore, the increase in the IPM cholesterol level was triggered in a stimulus-specific manner, allowing cholesterol to serve as a signaling lipid. We found excellent correlation between the IPM cholesterol level and cellular Wnt signaling activity, suggesting that TAPMC and stimulus-induced PM cholesterol redistribution are crucial for tight regulation of cellular processes under physiological conditions.


Assuntos
Membrana Celular/química , Colesterol/análise , Lipídeos/química , Linhagem Celular , Células HEK293 , Humanos
14.
Nat Chem Biol ; 12(6): 402-10, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27043189

RESUMO

Gangliosides, glycosphingolipids containing one or more sialic acid(s) in the glyco-chain, are involved in various important physiological and pathological processes in the plasma membrane. However, their exact functions are poorly understood, primarily because of the scarcity of suitable fluorescent ganglioside analogs. Here, we developed methods for systematically synthesizing analogs that behave like their native counterparts in regard to partitioning into raft-related membrane domains or preparations. Single-fluorescent-molecule imaging in the live-cell plasma membrane revealed the clear but transient colocalization and codiffusion of fluorescent ganglioside analogs with a fluorescently labeled glycosylphosphatidylinisotol (GPI)-anchored protein, human CD59, with lifetimes of 12 ms for CD59 monomers, 40 ms for CD59's transient homodimer rafts in quiescent cells, and 48 ms for engaged-CD59-cluster rafts, in cholesterol- and GPI-anchoring-dependent manners. The ganglioside molecules were always mobile in quiescent cells. These results show that gangliosides continually and dynamically exchange between raft domains and the bulk domain, indicating that raft domains are dynamic entities.


Assuntos
Antígenos CD59/química , Antígenos CD59/metabolismo , Gangliosídeos/química , Gangliosídeos/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Microdomínios da Membrana/metabolismo , Antígenos CD59/análise , Difusão , Fluorescência , Gangliosídeos/análise , Humanos , Microdomínios da Membrana/química , Conformação Molecular , Ligação Proteica , Fatores de Tempo
15.
J Biol Chem ; 291(34): 17639-50, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27334919

RESUMO

Lymphocyte-specific protein-tyrosine kinase (Lck) plays an essential role in T cell receptor (TCR) signaling and T cell development, but its activation mechanism is not fully understood. To explore the possibility that plasma membrane (PM) lipids control TCR signaling activities of Lck, we measured the membrane binding properties of its regulatory Src homology 2 (SH2) and Src homology 3 domains. The Lck SH2 domain binds anionic PM lipids with high affinity but with low specificity. Electrostatic potential calculation, NMR analysis, and mutational studies identified the lipid-binding site of the Lck SH2 domain that includes surface-exposed basic, aromatic, and hydrophobic residues but not the phospho-Tyr binding pocket. Mutation of lipid binding residues greatly reduced the interaction of Lck with the ζ chain in the activated TCR signaling complex and its overall TCR signaling activities. These results suggest that PM lipids, including phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate, modulate interaction of Lck with its binding partners in the TCR signaling complex and its TCR signaling activities in a spatiotemporally specific manner via its SH2 domain.


Assuntos
Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais/fisiologia , Substituição de Aminoácidos , Humanos , Células Jurkat , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Mutação de Sentido Incorreto , Fosfatidilinositol 4,5-Difosfato/genética , Fosfatos de Fosfatidilinositol/genética , Receptores de Antígenos de Linfócitos T/genética , Domínios de Homologia de src
16.
J Biol Chem ; 290(5): 2919-37, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25505182

RESUMO

Bacterial toxins require localization to specific intracellular compartments following injection into host cells. In this study, we examined the membrane targeting of a broad family of bacterial proteins, the patatin-like phospholipases. The best characterized member of this family is ExoU, an effector of the Pseudomonas aeruginosa type III secretion system. Upon injection into host cells, ExoU localizes to the plasma membrane, where it uses its phospholipase A2 activity to lyse infected cells. The targeting mechanism of ExoU is poorly characterized, but it was recently found to bind to the phospholipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), a marker for the plasma membrane of eukaryotic cells. We confirmed that the membrane localization domain (MLD) of ExoU had a direct affinity for PI(4,5)P2, and we determined that this binding was required for ExoU localization. Previously uncharacterized ExoU homologs from Pseudomonas fluorescens and Photorhabdus asymbiotica also localized to the plasma membrane and required PI(4,5)P2 for this localization. A conserved arginine within the MLD was critical for interaction of each protein with PI(4,5)P2 and for localization. Furthermore, we determined the crystal structure of the full-length P. fluorescens ExoU and found that it was similar to that of P. aeruginosa ExoU. Each MLD contains a four-helical bundle, with the conserved arginine exposed at its cap to allow for interaction with the negatively charged PI(4,5)P2. Overall, these findings provide a structural explanation for the targeting of patatin-like phospholipases to the plasma membrane and define the MLD of ExoU as a member of a new class of PI(4,5)P2 binding domains.


Assuntos
Membrana Celular/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfolipases/metabolismo , Proteínas de Bactérias/metabolismo , Células HeLa , Humanos , Photorhabdus/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Pseudomonas aeruginosa/metabolismo , Pseudomonas fluorescens/metabolismo
17.
J Neurosci ; 33(40): 15793-8, 2013 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-24089486

RESUMO

Actin polymerization is important for vesicle fission during clathrin-mediated endocytosis (CME), and it has been proposed that actin polymerization may promote vesicle fission during CME by providing direct mechanical forces. However, there is no direct evidence in support of this hypothesis. In the present study, the role of actin polymerization in vesicle fission was tested by analyzing the kinetics of the endocytic tubular membrane neck (the fission-pore) with cell-attached capacitance measurements to detect CME of single vesicles in a millisecond time resolution in mouse chromaffin cells. Inhibition in dynamin GTPase activity increased the fission-pore conductance (Gp), supporting the mechanical role of dynamin GTPase in vesicle fission. However, disruptions in actin polymerization did not alter the fission-pore conductance Gp, thus arguing against the force-generating role of actin polymerization in vesicle fission during CME. Similar to disruptions of actin polymerization, cholesterol depletion results in an increase in the fission-pore duration, indicating a role for cholesterol-dependent membrane reorganization in vesicle fission. Further experiments suggested that actin polymerization and cholesterol might function in vesicle fission during CME in the same pathway. Our results thus support a model in which actin polymerization promotes vesicle fission during CME by inducing cholesterol-dependent membrane reorganization.


Assuntos
Actinas/metabolismo , Clatrina/metabolismo , Endocitose/fisiologia , Endossomos/metabolismo , Animais , Membrana Celular/metabolismo , Células Cromafins/metabolismo , Dinaminas/metabolismo , Camundongos , Polimerização
18.
J Biol Chem ; 288(27): 19845-60, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23720744

RESUMO

The four PDZ (PDZ1 to PDZ4) domain-containing adaptor protein PDZK1 controls the expression, localization, and function of the HDL receptor scavenger receptor class B, type I (SR-BI), in hepatocytes in vivo. This control depends on both the PDZ4 domain and the binding of SR-BI's cytoplasmic C terminus to the canonical peptide-binding sites of either the PDZ1 or PDZ3 domain (no binding to PDZ2 or PDZ4). Using transgenic mice expressing in the liver domain deletion (ΔPDZ2 or ΔPDZ3), domain replacement (PDZ2→1), or target peptide binding-negative (PDZ4(G389P)) mutants of PDZK1, we found that neither PDZ2 nor PDZ3 nor the canonical target peptide binding activity of PDZ4 were necessary for hepatic SR-BI regulatory activity. Immunohistochemical studies established that the localization of PDZK1 on hepatocyte cell surface membranes in vivo is dependent on its PDZ4 domain and the presence of SR-BI. Analytical ultracentrifugation and hydrogen deuterium exchange mass spectrometry suggested that the requirement of PDZ4 for localization and SR-BI regulation is not due to PDZ4-mediated oligomerization or induction of conformational changes in the PDZ123 portion of PDZK1. However, surface plasmon resonance analysis showed that PDZ4, but not the other PDZ domains, can bind vesicles that mimic the plasma membrane. Thus, PDZ4 may potentiate PDZK1's regulation of SR-BI by promoting its lipid-mediated attachment to the cytoplasmic membrane. Our results show that not all of the PDZ domains of a multi-PDZ domain-containing adaptor protein are required for its biological activities and that both canonical target peptide binding and noncanonical (peptide binding-independent) capacities of PDZ domains may be employed by a single such adaptor for optimal in vivo activity.


Assuntos
Membrana Celular/metabolismo , Hepatócitos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Domínios PDZ/fisiologia , Receptores Depuradores Classe B/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Membrana Celular/química , Membrana Celular/genética , Células Cultivadas , Medição da Troca de Deutério , Hepatócitos/química , Hepatócitos/citologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana , Camundongos , Camundongos Knockout , Mutação de Sentido Incorreto , Ligação Proteica/fisiologia , Receptores Depuradores Classe B/química , Receptores Depuradores Classe B/genética , Deleção de Sequência , Ressonância de Plasmônio de Superfície
19.
Angew Chem Int Ed Engl ; 53(52): 14387-91, 2014 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-25345859

RESUMO

Lipids regulate a wide range of biological activities. Since their local concentrations are tightly controlled in a spatiotemporally specific manner, the simultaneous quantification of multiple lipids is essential for elucidation of the complex mechanisms of biological regulation. Here, we report a new method for the simultaneous in situ quantification of two lipid pools in mammalian cells using orthogonal fluorescent sensors. The sensors were prepared by incorporating two environmentally sensitive fluorophores with minimal spectral overlap separately into engineered lipid-binding proteins. Dual ratiometric analysis of imaging data allowed accurate, spatiotemporally resolved quantification of two different lipids on the same leaflet of the plasma membrane or a single lipid on two opposite leaflets of the plasma membrane of live mammalian cells. This new imaging technology should serve as a powerful tool for systems-level investigation of lipid-mediated cell signaling and regulation.


Assuntos
Corantes Fluorescentes/química , Animais , Carbofurano/análogos & derivados , Carbofurano/síntese química , Linhagem Celular Tumoral , Membrana Celular/química , Membrana Celular/metabolismo , Corantes Fluorescentes/síntese química , Humanos , Lipídeos/química , Camundongos , Microscopia de Fluorescência , Células NIH 3T3 , Oxazinas/síntese química , Oxazinas/química , PTEN Fosfo-Hidrolase/química , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/química , Fosfatidilinositol 3-Quinases/metabolismo , Fatores de Tempo
20.
Adv Mater ; 36(2): e2306808, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37732588

RESUMO

The plasma membranes (PM) of mammalian cells contain diverse lipids, proteins, and carbohydrates that are important for systemic recognition and communication in health and disease. Cell membrane coating technology that imparts unique properties of natural plasma membranes to the surface of encapsulated nanoparticles is thus becoming a powerful platform for drug delivery, immunomodulation, and vaccination. However, current coating methods fail to take full advantage of the natural systems because they disrupt the complex and functionally essential features of PMs, most notably the chemical diversity and compositional differences of lipids in two leaflets of the PM. Herein, a new lipid coating approach is reported in which the lipid composition is optimized through a combination of biomimetic and systematic variation approaches for the custom design of nanocarrier systems for precision drug delivery. Nanocarriers coated with the optimized lipids offer unique advantages in terms of bioavailability and efficiency in tumor targeting, tumor penetration, cellular uptake, and drug release. This pilot study provides new insight into the rational design and optimization of nanocarriers for cancer chemotherapeutic drugs and lays the foundation for further customization of cell membrane-mimicking nanocarriers through systematic incorporation of other components.


Assuntos
Nanopartículas , Neoplasias , Animais , Membrana Celular/metabolismo , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Lipídeos/química , Mamíferos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Projetos Piloto , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA