Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.860
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 620(7976): 1031-1036, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37612500

RESUMO

Speech brain-computer interfaces (BCIs) have the potential to restore rapid communication to people with paralysis by decoding neural activity evoked by attempted speech into text1,2 or sound3,4. Early demonstrations, although promising, have not yet achieved accuracies sufficiently high for communication of unconstrained sentences from a large vocabulary1-7. Here we demonstrate a speech-to-text BCI that records spiking activity from intracortical microelectrode arrays. Enabled by these high-resolution recordings, our study participant-who can no longer speak intelligibly owing to amyotrophic lateral sclerosis-achieved a 9.1% word error rate on a 50-word vocabulary (2.7 times fewer errors than the previous state-of-the-art speech BCI2) and a 23.8% word error rate on a 125,000-word vocabulary (the first successful demonstration, to our knowledge, of large-vocabulary decoding). Our participant's attempted speech was decoded  at 62 words per minute, which is 3.4 times as fast as the previous record8 and begins to approach the speed of natural conversation (160 words per minute9). Finally, we highlight two aspects of the neural code for speech that are encouraging for speech BCIs: spatially intermixed tuning to speech articulators that makes accurate decoding possible from only a small region of cortex, and a detailed articulatory representation of phonemes that persists years after paralysis. These results show a feasible path forward for restoring rapid communication to people with paralysis who can no longer speak.


Assuntos
Interfaces Cérebro-Computador , Próteses Neurais , Paralisia , Fala , Humanos , Esclerose Lateral Amiotrófica/fisiopatologia , Esclerose Lateral Amiotrófica/reabilitação , Córtex Cerebral/fisiologia , Microeletrodos , Paralisia/fisiopatologia , Paralisia/reabilitação , Vocabulário
2.
Nature ; 604(7905): 337-342, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35355021

RESUMO

Decades of work have elucidated cytokine signalling and transcriptional pathways that control T cell differentiation and have led the way to targeted biologic therapies that are effective in a range of autoimmune, allergic and inflammatory diseases. Recent evidence indicates that obesity and metabolic disease can also influence the immune system1-7, although the mechanisms and effects on immunotherapy outcomes remain largely unknown. Here, using two models of atopic dermatitis, we show that lean and obese mice mount markedly different immune responses. Obesity converted the classical type 2 T helper (TH2)-predominant disease associated with atopic dermatitis to a more severe disease with prominent TH17 inflammation. We also observed divergent responses to biologic therapies targeting TH2 cytokines, which robustly protected lean mice but exacerbated disease in obese mice. Single-cell RNA sequencing coupled with genome-wide binding analyses revealed decreased activity of nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ) in TH2 cells from obese mice relative to lean mice. Conditional ablation of PPARγ in T cells revealed that PPARγ is required to focus the in vivo TH response towards a TH2-predominant state and prevent aberrant non-TH2 inflammation. Treatment of obese mice with a small-molecule PPARγ agonist limited development of TH17 pathology and unlocked therapeutic responsiveness to targeted anti-TH2 biologic therapies. These studies reveal the effects of obesity on immunological disease and suggest a precision medicine approach to target the immune dysregulation caused by obesity.


Assuntos
Dermatite Atópica , PPAR gama , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Inflamação/metabolismo , Camundongos , Obesidade/metabolismo , PPAR gama/agonistas , PPAR gama/metabolismo , Medicina de Precisão , Análise de Sequência de RNA , Células Th2/metabolismo
3.
Nature ; 599(7886): 576-581, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34819684

RESUMO

Efficient magnetic control of electronic conduction is at the heart of spintronic functionality for memory and logic applications1,2. Magnets with topological band crossings serve as a good material platform for such control, because their topological band degeneracy can be readily tuned by spin configurations, dramatically modulating electronic conduction3-10. Here we propose that the topological nodal-line degeneracy of spin-polarized bands in magnetic semiconductors induces an extremely large angular response of magnetotransport. Taking a layered ferrimagnet, Mn3Si2Te6, and its derived compounds as a model system, we show that the topological band degeneracy, driven by chiral molecular orbital states, is lifted depending on spin orientation, which leads to a metal-insulator transition in the same ferrimagnetic phase. The resulting variation of angular magnetoresistance with rotating magnetization exceeds a trillion per cent per radian, which we call colossal angular magnetoresistance. Our findings demonstrate that magnetic nodal-line semiconductors are a promising platform for realizing extremely sensitive spin- and orbital-dependent functionalities.

4.
Nat Chem Biol ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664586

RESUMO

The natural product hinokitiol mobilizes iron across lipid bilayers at low concentrations and restores hemoglobinization in iron transporter protein-deficient systems. But hinokitiol fails to similarly mobilize iron at higher concentrations, limiting its uses in chemical biology and medicine. Here we show that at higher concentrations, hinokitiol3:Fe(III) complexes form large, higher-order aggregates, leading to loss of transmembrane iron mobilization. Guided by this understanding and systematic structure-function studies enabled by modular synthesis, we identified FeM-1269, which minimally aggregates and dose-dependently mobilizes iron across lipid bilayers even at very high concentrations. In contrast to hinokitiol, FeM-1269 is also well-tolerated in animals at high doses for extended periods of time. In a mouse model of anemia of inflammation, FeM-1269 increases serum iron, transferrin saturation, hemoglobin and hematocrit. This rationally developed iron-mobilizing small molecule has enhanced potential as a molecular prosthetic for understanding and potentially treating iron transporter deficiencies.

5.
Nature ; 582(7813): 520-524, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32581378

RESUMO

Fundamental studies of chemical reactions often consider the molecular dynamics along a reaction coordinate using a calculated or suggested potential energy surface1-5. But fully mapping such dynamics experimentally, by following all nuclear motions in a time-resolved manner-that is, the motions of wavepackets-is challenging and has not yet been realized even for the simple stereotypical bimolecular reaction6-8: A-B + C â†’ A + B-C. Here we track the trajectories of these vibrational wavepackets during photoinduced bond formation of the gold trimer complex [Au(CN)2-]3 in an aqueous monomer solution, using femtosecond X-ray liquidography9-12 with X-ray free-electron lasers13,14. In the complex, which forms when three monomers A, B and C cluster together through non-covalent interactions15,16, the distance between A and B is shorter than that between B and C. Tracking the wavepacket in three-dimensional nuclear coordinates reveals that within the first 60 femtoseconds after photoexcitation, a covalent bond forms between A and B to give A-B + C. The second covalent bond, between B and C, subsequently forms within 360 femtoseconds to give a linear and covalently bonded trimer complex A-B-C. The trimer exhibits harmonic vibrations that we map and unambiguously assign to specific normal modes using only the experimental data. In principle, more intense X-rays could visualize the motion not only of highly scattering atoms such as gold but also of lighter atoms such as carbon and nitrogen, which will open the door to the direct tracking of the atomic motions involved in many chemical reactions.

6.
Genes Dev ; 32(23-24): 1562-1575, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30478249

RESUMO

Heat shock factor 1 (HSF-1) and forkhead box O (FOXO) are key transcription factors that protect cells from various stresses. In Caenorhabditis elegans, HSF-1 and FOXO together promote a long life span when insulin/IGF-1 signaling (IIS) is reduced. However, it remains poorly understood how HSF-1 and FOXO cooperate to confer IIS-mediated longevity. Here, we show that prefoldin 6 (PFD-6), a component of the molecular chaperone prefoldin-like complex, relays longevity response from HSF-1 to FOXO under reduced IIS. We found that PFD-6 was specifically required for reduced IIS-mediated longevity by acting in the intestine and hypodermis. We showed that HSF-1 increased the levels of PFD-6 proteins, which in turn directly bound FOXO and enhanced its transcriptional activity. Our work suggests that the prefoldin-like chaperone complex mediates longevity response from HSF-1 to FOXO to increase the life span in animals with reduced IIS.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Longevidade/genética , Chaperonas Moleculares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Intestinos/fisiologia , Chaperonas Moleculares/genética , Ligação Proteica , Transdução de Sinais/genética , Tela Subcutânea/fisiologia , Ativação Transcricional/genética
7.
Artigo em Inglês | MEDLINE | ID: mdl-38451384

RESUMO

Tumor suppressor genes and proto-oncogenes comprise most of the complex genomic landscape associated with cancer, with a minimal number of genes exhibiting dual-context-dependent functions. The transcription factor cellular promoter 2 (TFCP2), a pivotal transcription factor encoded by the alpha globin transcription factor CP2 gene, is a constituent of the TFCP2/grainyhead family of transcription factors. While grainyhead members have been extensively studied for their crucial roles in developmental processes, embryogenesis, and multiple cancers, the TFCP2 subfamily has been relatively less explored. The molecular mechanisms underlying TFCP2's involvement in carcinogenesis are still unclear even though it is a desirable target for cancer treatment and a therapeutic marker. This comprehensive literature review summarizes the molecular functions of TFCP2, emphasizing its involvement in cancer pathophysiology, particularly in the epithelial-mesenchymal transition and metastasis. It highlights TFCP2's critical function as a regulatory target and explores its potential as a prognostic marker for survival and inflammation in carcinomas. Its ambiguous association with carcinomas underlines the urgent need for an in-depth understanding to facilitate the development of more efficacious targeted therapeutic modality and diagnostic tools. This study aims to elucidate the multifaceted effects of TFCP2 regulation, through a comprehensive integration of the existing knowledge in cancer therapeutics. Furthermore, the clinical relevance and the inherent challenges encountered in investigating its intricate role in cancer pathogenesis have been discussed in this review.

8.
Nature ; 565(7739): 331-336, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30559378

RESUMO

Discovered decades ago, the quantum Hall effect remains one of the most studied phenomena in condensed matter physics and is relevant for research areas such as topological phases, strong electron correlations and quantum computing1-5. The quantized electron transport that is characteristic of the quantum Hall effect typically originates from chiral edge states-ballistic conducting channels that emerge when two-dimensional electron systems are subjected to large magnetic fields2. However, whether the quantum Hall effect can be extended to higher dimensions without simply stacking two-dimensional systems is unknown. Here we report evidence of a new type of quantum Hall effect, based on Weyl orbits in nanostructures of the three-dimensional topological semimetal Cd3As2. The Weyl orbits consist of Fermi arcs (open arc-like surface states) on opposite surfaces of the sample connected by one-dimensional chiral Landau levels along the magnetic field through the bulk6,7. This transport through the bulk results in an additional contribution (compared to stacked two-dimensional systems and which depends on the sample thickness) to the quantum phase of the Weyl orbit. Consequently, chiral states can emerge even in the bulk. To measure these quantum phase shifts and search for the associated chiral modes in the bulk, we conduct transport experiments using wedge-shaped Cd3As2 nanostructures with variable thickness. We find that the quantum Hall transport is strongly modulated by the sample thickness. The dependence of the Landau levels on the magnitude and direction of the magnetic field and on the sample thickness agrees with theoretical predictions based on the modified Lifshitz-Onsager relation for the Weyl orbits. Nanostructures of topological semimetals thus provide a way of exploring quantum Hall physics in three-dimensional materials with enhanced tunability.

9.
Proc Natl Acad Sci U S A ; 119(18): e2202104119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35486697

RESUMO

The occurrence of intercellular channels formed by pannexin1 has been challenged for more than a decade. Here, we provide an electrophysiological characterization of exogenous human pannexin1 (hPanx1) cell­cell channels expressed in HeLa cells knocked out for connexin45. The observed hPanx1 cell­cell channels show two phenotypes: O-state and S-state. The former displayed low transjunctional voltage (Vj) sensitivity and single-channel conductance of ∼175 pS, with a substate of ∼35 pS; the latter showed a peculiar dynamic asymmetry in Vj dependence and single-channel conductance identical to the substate conductance of the O-state. S-state hPanx1 cell­cell channels were also identified between TC620 cells, a human oligodendroglioma cell line that endogenously expresses hPanx1. In these cells, dye and electrical coupling increased with temperature and were strongly reduced after hPanx1 expression was knocked down by small interfering RNA or inhibited with Panx1 mimetic inhibitory peptide. Moreover, cell­cell coupling was augmented when hPanx1 levels were increased with a doxycycline-inducible expression system. Application of octanol, a connexin gap junction (GJ) channel inhibitor, was not sufficient to block electrical coupling between HeLa KO Cx45-hPanx1 or TC620 cell pairs. In silico studies suggest that several arginine residues inside the channel pore may be neutralized by hydrophobic interactions, allowing the passage of DAPI, consistent with dye coupling observed between TC620 cells. These findings demonstrate that endogenously expressed hPanx1 forms intercellular cell­cell channels and their unique properties resemble those described in innexin-based GJ channels. Since Panx1 is ubiquitously expressed, finding conditions to recognize Panx1 cell­cell channels in different cell types might require special attention.


Assuntos
Conexinas , Proteínas do Tecido Nervoso , Animais , Conexinas/metabolismo , Humanos , Canais Iônicos , Mamíferos/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo
10.
Proc Natl Acad Sci U S A ; 119(26): e2121400119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35737834

RESUMO

Deficiencies of the transmembrane iron-transporting protein ferroportin (FPN1) cause the iron misdistribution that underlies ferroportin disease, anemia of inflammation, and several other human diseases and conditions. A small molecule natural product, hinokitiol, was recently shown to serve as a surrogate transmembrane iron transporter that can restore hemoglobinization in zebrafish deficient in other iron transporting proteins and can increase gut iron absorption in FPN1-deficient flatiron mice. However, whether hinokitiol can restore normal iron physiology in FPN1-deficient animals or primary cells from patients and the mechanisms underlying such targeted activities remain unknown. Here, we show that hinokitiol redistributes iron from the liver to red blood cells in flatiron mice, thereby increasing hemoglobin and hematocrit. Mechanistic studies confirm that hinokitiol functions as a surrogate transmembrane iron transporter to release iron trapped within liver macrophages, that hinokitiol-Fe complexes transfer iron to transferrin, and that the resulting transferrin-Fe complexes drive red blood cell maturation in a transferrin-receptor-dependent manner. We also show in FPN1-deficient primary macrophages derived from patients with ferroportin disease that hinokitiol moves labile iron from inside to outside cells and decreases intracellular ferritin levels. The mobilization of nonlabile iron is accompanied by reductions in intracellular ferritin, consistent with the activation of regulated ferritin proteolysis. These findings collectively provide foundational support for the translation of small molecule iron transporters into therapies for human diseases caused by iron misdistribution.


Assuntos
Ferro , Macrófagos , Monoterpenos , Tropolona/análogos & derivados , Animais , Proteínas de Transporte de Cátions/deficiência , Ferritinas/metabolismo , Humanos , Ferro/metabolismo , Macrófagos/metabolismo , Camundongos , Monoterpenos/metabolismo , Transferrina/metabolismo , Tropolona/metabolismo , Peixe-Zebra/metabolismo
11.
Proc Natl Acad Sci U S A ; 119(30): e2119048119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858411

RESUMO

The major challenges in pancreatic ductal adenocarcinoma (PDAC) management are local or distant metastasis and limited targeted therapeutics to prevent it. To identify a druggable target in tumor secretome and to explore its therapeutic intervention, we performed a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomic analysis of tumors obtained from a patient-derived xenograft model of PDAC. Galectin-3 binding protein (Gal-3BP) is identified as a highly secreted protein, and its overexpression is further validated in multiple PDAC tumors and primary cells. Knockdown and exogenous treatment of Gal-3BP showed that it is required for PDAC cell proliferation, migration, and invasion. Mechanistically, we revealed that Gal-3BP enhances galectin-3-mediated epidermal growth factor receptor signaling, leading to increased cMyc and epithelial-mesenchymal transition. To explore the clinical impact of these findings, two antibody clones were developed, and they profoundly abrogated the metastasis of PDAC cells in vivo. Altogether, our data demonstrate that Gal-3BP is an important therapeutic target in PDAC, and we propose its blockade by antibody as a therapeutic option for suppressing PDAC metastasis.


Assuntos
Antígenos de Neoplasias , Antineoplásicos Imunológicos , Biomarcadores Tumorais , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Antineoplásicos Imunológicos/imunologia , Antineoplásicos Imunológicos/uso terapêutico , Biomarcadores Tumorais/antagonistas & inibidores , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/secundário , Carcinoma Ductal Pancreático/terapia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Cromatografia Líquida , Transição Epitelial-Mesenquimal , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/terapia , Proteômica , Secretoma , Espectrometria de Massas em Tandem , Ensaios Antitumorais Modelo de Xenoenxerto
12.
J Biol Chem ; 299(3): 102996, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36764520

RESUMO

SOX2 and SOX15 are Sox family transcription factors enriched in embryonic stem cells (ESCs). The role of SOX2 in activating gene expression programs essential for stem cell self-renewal and acquisition of pluripotency during somatic cell reprogramming is well-documented. However, the contribution of SOX15 to these processes is unclear and often presumed redundant with SOX2 largely because overexpression of SOX15 can partially restore self-renewal in SOX2-deficient ESCs. Here, we show that SOX15 contributes to stem cell maintenance by cooperating with ESC-enriched transcriptional coactivators to ensure optimal expression of pluripotency-associated genes. We demonstrate that SOX15 depletion compromises reprogramming of fibroblasts to pluripotency which cannot be compensated by SOX2. Ectopic expression of SOX15 promotes the reversion of a postimplantation, epiblast stem cell state back to a preimplantation, ESC-like identity even though SOX2 is expressed in both cell states. We also uncover a role of SOX15 in lineage specification, by showing that loss of SOX15 leads to defects in commitment of ESCs to neural fates. SOX15 promotes neural differentiation by binding to and activating a previously uncharacterized distal enhancer of a key neurogenic regulator, Hes5. Together, these findings identify a multifaceted role of SOX15 in induction and maintenance of pluripotency and neural differentiation.


Assuntos
Regulação da Expressão Gênica , Fatores de Transcrição , Diferenciação Celular/genética , Células-Tronco Embrionárias/metabolismo , Fibroblastos/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
13.
J Am Chem Soc ; 146(27): 18714-18721, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38924484

RESUMO

Mixed-valence dilanthanide complexes of the type (CpiPr5)2Ln2I3 (CpiPr5 = pentaisopropylcyclopentadienyl; Ln = Gd, Tb, Dy) featuring a direct Ln-Ln σ-bonding interaction have been shown to exhibit well-isolated high-spin ground states and, in the case of the Tb and Dy variants, a strong axial magnetic anisotropy that gives rise to a large magnetic coercivity. Here, we report the synthesis and characterization of two new mixed-valence dilanthanide compounds in this series, (CpiPr5)2Ln2I3 (1-Ln; Ln = Ho, Er). Both compounds feature a Ln-Ln bonding interaction, the first such interaction in any molecular compounds of Ho or Er. Like the Tb and Dy congeners, both complexes exhibit high-spin ground states arising from strong spin-spin coupling between the lanthanide 4f electrons and a single σ-type lanthanide-lanthanide bonding electron. Beyond these similarities, however, the magnetic properties of the two compounds diverge. In particular, 1-Er does not exhibit observable magnetic blocking or slow magnetic relaxation, while 1-Ho exhibits magnetic blocking below 28 K, which is the highest temperature among Ho-based single-molecule magnets, and a spin reversal barrier of 556(4) cm-1. Additionally, variable-field magnetization data collected for 1-Ho reveal a coercive field of greater than 32 T below 8 K, more than 6-fold higher than observed for the bulk magnets SmCo5 and Nd2Fe14B, and the highest coercive field reported to date for any single-molecule magnet or molecule-based magnetic material. Multiconfigurational calculations, supported by far-infrared magnetospectroscopy data, reveal that the stark differences in magnetic properties of 1-Ho and 1-Er arise from differences in the local magnetic anisotropy of the lanthanide centers.

14.
J Neurochem ; 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39032068

RESUMO

The nucleus of the solitary tract (NTS) receives direct viscerosensory vagal afferent input that drives autonomic reflexes, neuroendocrine function and modulates behaviour. A subpopulation of NTS neurons project to the nucleus accumbens (NAc); however, the function of this NTS-NAc pathway remains unknown. A combination of neuroanatomical tracing, slice electrophysiology and fibre photometry was used in mice and/or rats to determine how NTS-NAc neurons fit within the viscerosensory network. NTS-NAc projection neurons are predominantly located in the medial and caudal portions of the NTS with 54 ± 7% (mice) and 65 ± 3% (rat) being TH-positive, representing the A2 NTS cell group. In horizontal brainstem slices, solitary tract (ST) stimulation evoked excitatory post-synaptic currents (EPSCs) in NTS-NAc projection neurons. The majority (75%) received low-jitter, zero-failure EPSCs characteristic of monosynaptic ST afferent input that identifies them as second order to primary sensory neurons. We then examined whether NTS-NAc neurons respond to cholecystokinin (CCK, 20 µg/kg ip) in vivo in both mice and rats. Surprisingly, there was no difference in the number of activated NTS-NAc cells between CCK and saline-treated mice. In rats, just 6% of NTS-NAc cells were recruited by CCK. As NTS TH neurons are the primary source for NAc noradrenaline, we measured noradrenaline release in the NAc and showed that NAc noradrenaline levels declined in response to cue-induced reward retrieval but not foot shock. Combined, these findings suggest that high-fidelity afferent information from viscerosensory afferents reaches the NAc. These signals are likely unrelated to CCK-sensitive vagal afferents but could interact with other sensory and higher order inputs to modulate learned appetitive behaviours.

15.
Cancer Sci ; 115(6): 2036-2048, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38613358

RESUMO

Triple-negative breast cancer (TNBC) patients harboring wild-type breast cancer susceptibility gene 1 (BRCA1) account for most TNBC patients but lack adequate targeted therapeutic options. Although radiotherapy (RT) is the primary treatment modality for TNBC patients, radioresistance is one of the major challenges. RT-induced increase in cathepsin S (CTSS) causes radioresistance through suppressing BRCA1-mediated apoptosis of tumor cells, which was induced by CTSS-mediated degradation of BRCA1. Targeting CTSS may provide a novel therapeutic opportunity for TNBC patients. Publicly available data and human tissue microarray slides were analyzed to investigate the relationship between CTSS and BRCA1 in breast cancer patients. A CTSS enzyme assay and in silico docking analysis were conducted to identify a novel CTSS inhibitor. RO5461111 was used first to confirm the concept of targeting CTSS for radiosensitizing effects. The MDA-MB-231 TNBC cell line was used for in vitro and in vivo assays. Western blotting, promoter assay, cell death assay, clonogenic survival assay, and immunohistochemistry staining were conducted to evaluate novel CTSS inhibitors. CTSS inhibitors were further evaluated for their additional benefit of inhibiting cell migration. A novel CTSS inhibitor, TS-24, increased BRCA1 protein levels and showed radiosensitization in TNBC cells with wild-type BRCA1 and in vivo in a TNBC xenograft mouse model. These effects were attributed by BRCA1-mediated apoptosis facilitated by TS-24. Furthermore, TS-24 demonstrated the additional effect of inhibiting cell migration. Our study suggests that employing CTSS inhibitors for the functional restoration of BRCA1 to enhance RT-induced apoptosis may provide a novel therapeutic opportunity for TNBC patients harboring wild-type BRCA1.


Assuntos
Apoptose , Proteína BRCA1 , Radiossensibilizantes , Neoplasias de Mama Triplo Negativas , Animais , Feminino , Humanos , Camundongos , Apoptose/efeitos dos fármacos , Catepsinas/metabolismo , Catepsinas/antagonistas & inibidores , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Camundongos Nus , Estabilidade Proteica/efeitos dos fármacos , Tolerância a Radiação/efeitos dos fármacos , Radiossensibilizantes/farmacologia , Neoplasias de Mama Triplo Negativas/radioterapia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Kidney Int ; 105(5): 997-1019, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38320721

RESUMO

Toxin- and drug-induced tubulointerstitial nephritis (TIN), characterized by interstitial infiltration of immune cells, frequently necessitates dialysis for patients due to irreversible fibrosis. However, agents modulating interstitial immune cells are lacking. Here, we addressed whether the housekeeping enzyme glutamyl-prolyl-transfer RNA synthetase 1 (EPRS1), responsible for attaching glutamic acid and proline to transfer RNA, modulates immune cell activity during TIN and whether its pharmacological inhibition abrogates fibrotic transformation. The immunological feature following TIN induction by means of an adenine-mixed diet was infiltration of EPRS1high T cells, particularly proliferating T and γδ T cells. The proliferation capacity of both CD4+ and CD8+ T cells, along with interleukin-17 production of γδ T cells, was higher in the kidneys of TIN-induced Eprs1+/+ mice than in the kidneys of TIN-induced Eprs1+/- mice. This discrepancy contributed to the fibrotic amelioration observed in kidneys of Eprs1+/- mice. TIN-induced fibrosis was also reduced in Rag1-/- mice adoptively transferred with Eprs1+/- T cells compared to the Rag1-/- mice transferred with Eprs1+/+ T cells. The use of an EPRS1-targeting small molecule inhibitor (bersiporocin) under clinical trials to evaluate its therapeutic potential against idiopathic pulmonary fibrosis alleviated immunofibrotic aggravation in TIN. EPRS1 expression was also observed in human kidney tissues and blood-derived T cells, and high expression was associated with worse patient outcomes. Thus, EPRS1 may emerge as a therapeutic target in toxin- and drug-induced TIN, modulating the proliferation and activity of infiltrated T cells.


Assuntos
Aminoacil-tRNA Sintetases , Nefrite Intersticial , Insuficiência Renal , Animais , Humanos , Camundongos , Aminoacil-tRNA Sintetases/metabolismo , Linfócitos T CD8-Positivos , Proliferação de Células , Fibrose , Proteínas de Homeodomínio , Nefrite Intersticial/induzido quimicamente , Nefrite Intersticial/genética , Nefrite Intersticial/tratamento farmacológico
17.
Br J Cancer ; 130(1): 43-52, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37903909

RESUMO

BACKGROUND: The TeloVac study indicated GV1001 did not improve the survival of advanced pancreatic ductal adenocarcinoma (PDAC). However, the cytokine examinations suggested that high serum eotaxin levels may predict responses to GV1001. This Phase III trial assessed the efficacy of GV1001 with gemcitabine/capecitabine for eotaxin-high patients with untreated advanced PDAC. METHODS: Patients recruited from 16 hospitals received gemcitabine (1000 mg/m2, D 1, 8, and 15)/capecitabine (830 mg/m2 BID for 21 days) per month either with (GV1001 group) or without (control group) GV1001 (0.56 mg; D 1, 3, and 5, once on week 2-4, 6, then monthly thereafter) at random in a 1:1 ratio. The primary endpoint was overall survival (OS) and secondary end points included time to progression (TTP), objective response rate, and safety. RESULTS: Total 148 patients were randomly assigned to the GV1001 (n = 75) and control groups (n = 73). The GV1001 group showed improved median OS (11.3 vs. 7.5 months, P = 0.021) and TTP (7.3 vs. 4.5 months, P = 0.021) compared to the control group. Grade >3 adverse events were reported in 77.3% and 73.1% in the GV1001 and control groups (P = 0.562), respectively. CONCLUSIONS: GV1001 plus gemcitabine/capecitabine improved OS and TTP compared to gemcitabine/capecitabine alone in eotaxin-high patients with advanced PDAC. CLINICAL TRIAL REGISTRATION: NCT02854072.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Gencitabina , Capecitabina/efeitos adversos , Desoxicitidina/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Neoplasias Pancreáticas/patologia , Adenocarcinoma/induzido quimicamente
18.
Small ; 20(15): e2308872, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37994300

RESUMO

Chemotherapy using a nanoscaled drug delivery system is an effective cancer therapy, but its high drug concentration often causes drug resistance in cancer cells and normal cell damage. Combination therapy involving two or more different cell signaling pathways can be a powerful tool to overcome the limitations of chemotherapy. Herein, this article presents nanogel (NG)-mediated co-delivery of a chemodrug camptothecin (CPT) and mitochondria-targeting monomer (MT monomer) for efficient activation of two modes of the programmed cell death pathway (apoptosis and necroptosis) and synergistic enhancement of cancer therapy. CPT and the monomer are incorporated together into the redox-degradable polymeric NGs for release in response to the intracellular glutathione. The MT monomer is shown to undergo reactive oxygen species (ROS)-triggered disulfide polymerization inside the cancerous mitochondria in cooperation with the chemotherapeutic CPT elevating the intracellular ROS level. The CPT/monomer interconnection in cell death mechanisms for mitochondrial dysfunction and enhanced cell death is evidenced by a series of cell analyses showing ROS generation, mitochondria damage, impacts on (non)cancerous or drug-resistant cells, and cell death modes. The presented work provides beneficial insights for utilizing combination therapy to facilitate a desired cell death mechanism and developing a novel nanosystem for more efficacious cancer treatment.


Assuntos
Dissulfetos , Neoplasias , Polietilenoglicóis , Polietilenoimina , Humanos , Nanogéis , Preparações Farmacêuticas , Dissulfetos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Polimerização , Morte Celular , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral , Camptotecina/farmacologia , Camptotecina/uso terapêutico
19.
Nat Immunol ; 13(5): 465-73, 2012 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-22447028

RESUMO

Aging is linked to greater susceptibility to chronic inflammatory diseases, several of which, including periodontitis, involve neutrophil-mediated tissue injury. Here we found that aging-associated periodontitis was accompanied by lower expression of Del-1, an endogenous inhibitor of neutrophil adhesion dependent on the integrin LFA-1, and by reciprocal higher expression of interleukin 17 (IL-17). Consistent with that, IL-17 inhibited gingival endothelial cell expression of Del-1, thereby promoting LFA-1-dependent recruitment of neutrophils. Young Del-1-deficient mice developed spontaneous periodontitis that featured excessive neutrophil infiltration and IL-17 expression; disease was prevented in mice doubly deficient in Del-1 and LFA-1 or in Del-1 and the IL-17 receptor. Locally administered Del-1 inhibited IL-17 production, neutrophil accumulation and bone loss. Therefore, Del-1 suppressed LFA-1-dependent recruitment of neutrophils and IL-17-triggered inflammatory pathology and may thus be a promising therapeutic agent for inflammatory diseases.


Assuntos
Perda do Osso Alveolar/imunologia , Proteínas de Transporte/metabolismo , Interleucina-17/antagonistas & inibidores , Interleucina-17/metabolismo , Infiltração de Neutrófilos/efeitos dos fármacos , Periodontite/metabolismo , Envelhecimento/imunologia , Animais , Proteínas de Ligação ao Cálcio , Proteínas de Transporte/imunologia , Proteínas de Transporte/farmacologia , Adesão Celular/efeitos dos fármacos , Moléculas de Adesão Celular , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/imunologia , Feminino , Integrinas/antagonistas & inibidores , Integrinas/imunologia , Integrinas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Interleucina-17/imunologia , Antígeno-1 Associado à Função Linfocitária/imunologia , Antígeno-1 Associado à Função Linfocitária/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos/imunologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Atrofia Periodontal/imunologia , Atrofia Periodontal/metabolismo , Periodontite/imunologia , Periodontite/terapia , Receptores de Interleucina-17/deficiência , Receptores de Interleucina-17/metabolismo
20.
J Med Virol ; 96(5): e29655, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38727091

RESUMO

Viruses can spread through contaminated aerosols and contaminated surface materials, and effective disinfection techniques are essential for virus inactivation. Nonthermal plasma-generated reactive oxygen and nitrogen species can effectively inactivate the coronavirus. We aim to interpret the coronavirus inactivation level and mechanism of surface interaction with materials with and without dielectric barrier discharge (DBD) plasma treatment. Nonthermal plasma, particularly surface-type DBD plasma, can inactivate human coronavirus 229E (HCoV-229E) on porous (paper, wood, mask) and nonporous (plastic, stainless steel, glass, Cu) materials. Virus inactivation was analyzed using a 50% tissue culture infectivity dose (TCID50) using cell line, flow cytometry, and immunofluorescence. Surfaces contaminated with HCoV-229E were treated at different time intervals (0-5 h) with and without plasma exposure (natural decay in ambient air conditions). HCoV-229E persistence conformed to the following order: plastic > cover glass > stainless steel > mask > wood > paper > Cu with and without plasma exposure. HCoV-229E was more stable in plastic, cover glass, and stainless steel in 5 h, and the viable virus titer gradually decreased from its initial log10 order of 6.892 to 1.72, 1.53, and 1.32 TCID50/mL, respectively, under plasma exposure. No virus was observed in Cu after treatment for 5 h. The use of airflow, ambient nitrogen, and argon did not promote virus inactivation. Flow cytometry and immunofluorescence analysis demonstrated a low expression level of spike protein (fluorescence intensity) during plasma treatment and in E and M genes expression compared with the virus control.


Assuntos
Coronavirus Humano 229E , Gases em Plasma , Inativação de Vírus , Humanos , Coronavirus Humano 229E/efeitos dos fármacos , Coronavirus Humano 229E/fisiologia , Inativação de Vírus/efeitos dos fármacos , Gases em Plasma/farmacologia , Linhagem Celular , Porosidade , Desinfecção/métodos , Aço Inoxidável
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA