Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 21(1): 120, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37024939

RESUMO

Antigen self-assembly nanovaccines advance the minimalist design of therapeutic cancer vaccines, but the issue of inefficient cross-presentation has not yet been fully addressed. Herein, we report a unique approach by combining the concepts of "antigen multi-copy display" and "calcium carbonate (CaCO3) biomineralization" to increase cross-presentation. Based on this strategy, we successfully construct sub-100 nm biomineralized antigen nanosponges (BANSs) with high CaCO3 loading (38.13 wt%) and antigen density (61.87%). BANSs can be effectively uptaken by immature antigen-presenting cells (APCs) in the lymph node upon subcutaneous injection. Achieving efficient spatiotemporal coordination of antigen cross-presentation and immune effects, BANSs induce the production of CD4+ T helper cells and cytotoxic T lymphocytes, resulting in effective tumor growth inhibition. BANSs combined with anti-PD-1 antibodies synergistically enhance anti-tumor immunity and reverse the tumor immunosuppressive microenvironment. Overall, this CaCO3 powder-mediated biomineralization of antigen nanosponges offer a robust and safe strategy for cancer immunotherapy.


Assuntos
Vacinas Anticâncer , Neoplasias , Humanos , Pós , Linfócitos T CD8-Positivos , Biomineralização , Células Apresentadoras de Antígenos , Neoplasias/tratamento farmacológico , Vacinas Anticâncer/uso terapêutico , Imunoterapia/métodos , Microambiente Tumoral
2.
J Nanobiotechnology ; 19(1): 426, 2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34922541

RESUMO

Lactate plays a critical role in tumorigenesis, invasion and metastasis. Exhausting lactate in tumors holds great promise for the reversal of the immunosuppressive tumor microenvironment (TME). Herein, we report on a "lactate treatment plant" (i.e., nanofactory) that can dynamically trap pro-tumor lactate and in situ transformation into anti-tumor cytotoxic reactive oxygen species (ROS) for a synergistic chemodynamic and metabolic therapy. To this end, lactate oxidase (LOX) was nano-packaged by cationic polyethyleneimine (PEI), assisted by a necessary amount of copper ions (PLNPCu). As a reservoir of LOX, the tailored system can actively trap lactate through the cationic PEI component to promote lactate degradation by two-fold efficiency. More importantly, the byproducts of lactate degradation, hydrogen peroxide (H2O2), can be transformed into anti-tumor ROS catalyzing by copper ions, mediating an immunogenic cell death (ICD). With the remission of immunosuppressive TME, ICD process effectively initiated the positive immune response in 4T1 tumor model (88% tumor inhibition). This work provides a novel strategy that rationally integrates metabolic therapy and chemodynamic therapy (CDT) for combating tumors.


Assuntos
Radical Hidroxila/metabolismo , Ácido Láctico/metabolismo , Nanopartículas/química , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/uso terapêutico , Catálise , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cobre/química , Glutationa/química , Humanos , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Radical Hidroxila/química , Morte Celular Imunogênica/efeitos dos fármacos , Ácido Láctico/química , Camundongos , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Nanopartículas/uso terapêutico , Nanopartículas/toxicidade , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Polietilenoimina/química , Microambiente Tumoral
3.
Adv Healthc Mater ; 12(11): e2202695, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36622285

RESUMO

Methionine metabolism has a significant impact on T cells' survival and activation even in comparison to arginine, a well-documented amino acid in metabolic therapy. However, hydrophilic methionine is hardly delivered into TME due to difficult loading and rapid diffusion. Herein, the labeling assembly of methionine into nanoparticle is developed to overcome high hydrophilicity for mild-heat mediated immunometabolic therapy. The strategy is to first label methionine with protocatechualdehyde (as the tag) via reversible Schiff-base bond, and then drive nanoassembly of methionine (MPC@Fe) mediated by iron ions. In this fashion, a loading efficiency of 40% and assembly induced photothermal characteristics can be achieved. MPC@Fe can accumulate persistently in tumor up to 36 h due to tumor-selective aggregation in acidic TME. A mild heat of 43 °C on tumor by light irradiation stimulated the immunogenic cell death and effectively generated CD8+ T cells. Notably, MPC@Fe assisted by mild heat promoted 4.2-fold of tumor-infiltrating INF-γ+ CD8+ T cells, leading to an inhibition ratio of 27.3-fold versus the free methionine. Such labeling assembly provides a promising methionine delivery platform to realize mild heat mediated immunometabolic therapy, and is potentially extensible to other amino acids.


Assuntos
Nanopartículas , Neoplasias , Humanos , Metionina , Temperatura Alta , Linfócitos T CD8-Positivos , Nanopartículas/química , Racemetionina , Aminoácidos , Linhagem Celular Tumoral
4.
Pharmaceutics ; 14(4)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35456568

RESUMO

In cancer immunotherapy, immune cells are the main force for tumor eradication. However, they appear to be dysfunctional due to the taming of the tumor immunosuppressive microenvironment. Recently, many materials-engineered strategies are proposed to enhance the anti-tumor effect of immune cells. These strategies either utilize biomimetic materials, as building blocks to construct inanimate entities whose functions are similar to natural living cells, or engineer immune cells with functional materials, to potentiate their anti-tumor effects. In this review, we will summarize these advanced strategies in different cell types, as well as discussing the prospects of this field.

5.
Artigo em Inglês | MEDLINE | ID: mdl-35578899

RESUMO

Lactate accumulation in the solid tumor is highly relevant to the immunosuppressive tumor microenvironment (TME). Targeting lactate metabolism significantly enhances the efficacy of immunotherapy. However, lactate depletion by lactate oxidase (LOX) consumes oxygen and results in the aggravated hypoxia situation, counteracting the benefit of lactate depletion. Beyond the TME regulation, it is necessary to initiate the effective immunity cycle for therapeutic purposes. In this fashion, dual close-loop of catalyzed lactate depletion and immune response by a rational material design are established to address this issue. Here, we constructed PEG-modified mesoporous polydopamine nanoparticles with Cu2+ chelation and LOX encapsulation (denoted as mCuLP). After mCuLP nanosystems targeting into the tumor sites, released LOX consumes lactate to H2O2. Subsequently, the produced H2O2 is further catalyzed by Cu2+-chelated mPDA to produce oxygen, supplying the oxygen source for the closed-loop of lactate depletion. Meanwhile, the mild PTT caused by the photothermal mPDA induces ICD of tumor cells to promote DC maturation and then T lymphocyte infiltration to kill tumor cells, which forms another closed-loop for cancer immunity. Therefore, this dual closed-loop strategy of mCuLP nanosystems effectively inhibits tumor growth, providing a promising treatment modality to cancer immunotherapy.

6.
Nano Res ; 14(5): 1244-1259, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33250971

RESUMO

Immunotherapy techniques, such as immune checkpoint inhibitors, chimeric antigen receptor (CAR) T cell therapies and cancer vaccines, have been burgeoning with great success, particularly for specific cancer types. However, side effects with fatal risks, dysfunction in tumor microenvironment and low immune response rates remain the bottlenecks in immunotherapy. Nano metal-organic frameworks (nMOFs), with an accurate structure and a narrow size distribution, are emerging as a solution to these problems. In addition to their function of temporospatial delivery, a large library of their compositions, together with flexibility in chemical interaction and inherent immune efficacy, offers opportunities for various designs of nMOFs for immunotherapy. In this review, we overview state-of-the-art research on nMOFs-based immunotherapies as well as their combination with other therapies. We demonstrate that nMOFs are predominantly customized for vaccine delivery or tumor-microenvironment modulation. Finally, a prospect of nMOFs in cancer immunotherapy will be discussed.

7.
Biomaterials ; 277: 121089, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34481292

RESUMO

Current efforts to develop novel vaccine nanotechnologies to increase cytotoxic T lymphocytes have met the challenges of the limited efficacy of antigen cross-presentation. Recent studies have uncovered a unique biological mechanism by which activation of the NADPH oxidase 2 (NOX2) complex, a major source of reactive oxygen species (ROS), enhances the cross-presentation by antigen-presenting cells (APCs). Inspired by the NOX2 mechanism, we devise biomineralized nanovaccines named NVscp, which are developed by in situ growth of calcium peroxide on nanovaccines self-assembled with the model antigen ovalbumin. The ~80 nm NVscp efficiently flow to the draining lymph nodes, where they accumulate within APC endo-/lysosomes, and generate a rapid burst of ROS in response to the acidic endo-/lysosomal environment with the subsequent endo-/lysosomal lipid peroxidation. Accompanied by the process, NVscp stimulate distinct APCs maturation and antigen presentation to T lymphocytes. Notably, high levels of antigen-specific CD8+ T cell responses, accompanied by the induction of CD4+ T helper cells, are achieved. More importantly, NVscp significantly increase the ratios of intratumoral CD8+ T/regulatory T cells and achieve prominent tumor therapy effects. The NOX2-inspired biomineralized NVscp represent an effective and easily applicable strategy that enables the strong cross-presentation of exogenous vaccine antigens.


Assuntos
Apresentação Cruzada , Neoplasias , Animais , Apresentação de Antígeno , Biomineralização , Linfócitos T CD8-Positivos , Células Dendríticas , Humanos , Imunoterapia , Peroxidação de Lipídeos , Camundongos , Camundongos Endogâmicos C57BL , NADPH Oxidases , Neoplasias/terapia
8.
Cell Rep ; 33(11): 108499, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33326787

RESUMO

By incorporating an artificial reactive oxygen species (ROS) generation mechanism, a biotic/abiotic integration is designed to improve the anti-tumor effect of neutrophils by artificially potentiating their ROS effector mechanism in a remotely controlled route. Specifically, the photosensitizer Ce6 is nano-packaged by the albumin BSA to achieve biocompatible and efficient integration with neutrophils (NEs). Reinfusion of the engineered NEs into 4T1 tumor-bearing mice led to more Ce6 accumulation in tumors relative to Ce6 nanoformulation. At the peak of accumulation, tumor illumination activates the embedded Ce6 for ROS generation and NETosis formation. Because of the ROS-intensified cytolytic effect, the growth of 4T1 tumors is inhibited significantly. The photo-controlled process largely avoids the off-target effects observed frequently in current cell therapies. The strategy directly generates ROS effector molecules with spatiotemporal precision. This engineering approach is able to potentiate the native capacity of immune cells independent of the tumor microenvironment.


Assuntos
Imunoterapia/métodos , Neoplasias/tratamento farmacológico , Neutrófilos/metabolismo , Animais , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA