Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
PLoS Genet ; 8(7): e1002835, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22844252

RESUMO

The circadian regulatory network is organized in a hierarchical fashion, with a central oscillator in the suprachiasmatic nuclei (SCN) orchestrating circadian oscillations in peripheral tissues. The nature of the relationship between central and peripheral oscillators, however, is poorly understood. We used the tetOFF expression system to specifically restore Clock function in the brains of Clock(Δ19) mice, which have compromised circadian clocks. Rescued mice showed normal locomotor rhythms in constant darkness, with activity period lengths approximating wildtype controls. We used microarray analysis to assess whether brain-specific rescue of circadian rhythmicity was sufficient to restore circadian transcriptional output in the liver. Compared to Clock mutants, Clock-rescue mice showed significantly larger numbers of cycling transcripts with appropriate phase and period lengths, including many components of the core circadian oscillator. This indicates that the SCN oscillator overcomes local circadian defects and signals directly to the molecular clock. Interestingly, the vast majority of core clock genes in liver were responsive to Clock expression in the SCN, suggesting that core clock genes in peripheral tissues are intrinsically sensitive to SCN cues. Nevertheless, most circadian output in the liver was absent or severely low-amplitude in Clock-rescue animals, demonstrating that the majority of peripheral transcriptional rhythms depend on a fully functional local circadian oscillator. We identified several new system-driven rhythmic genes in the liver, including Alas1 and Mfsd2. Finally, we show that 12-hour transcriptional rhythms (i.e., circadian "harmonics") are disrupted by Clock loss-of-function. Brain-specific rescue of Clock converted 12-hour rhythms into 24-hour rhythms, suggesting that signaling via the central circadian oscillator is required to generate one of the two daily peaks of expression. Based on these data, we conclude that 12-hour rhythms are driven by interactions between central and peripheral circadian oscillators.


Assuntos
Relógios Biológicos/genética , Proteínas CLOCK/genética , Ritmo Circadiano , Periodicidade , Núcleo Supraquiasmático/metabolismo , Transcrição Gênica , Animais , Proteínas CLOCK/metabolismo , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Escuridão , Regulação da Expressão Gênica , Luz , Fígado/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Mutantes , Especificidade de Órgãos , Simportadores
2.
PLoS Genet ; 3(2): e33, 2007 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-17319750

RESUMO

The mechanism of circadian oscillations in mammals is cell autonomous and is generated by a set of genes that form a transcriptional autoregulatory feedback loop. While these "clock genes" are well conserved among animals, their specific functions remain to be fully understood and their roles in central versus peripheral circadian oscillators remain to be defined. We utilized the in vivo inducible tetracycline-controlled transactivator (tTA) system to regulate Clock gene expression conditionally in a tissue-specific and temporally controlled manner. Through the use of Secretogranin II to drive tTA expression, suprachiasmatic nucleus- and brain-directed expression of a tetO::Clock(Delta19) dominant-negative transgene lengthened the period of circadian locomotor rhythms in mice, whereas overexpression of a tetO::Clock(wt) wild-type transgene shortened the period. Low doses (10 mug/ml) of doxycycline (Dox) in the drinking water efficiently inactivated the tTA protein to silence the tetO transgenes and caused the circadian periodicity to return to a wild-type state. Importantly, low, but not high, doses of Dox were completely reversible and led to a rapid reactivation of the tetO transgenes. The rapid time course of tTA-regulated transgene expression demonstrates that the CLOCK protein is an excellent indicator for the kinetics of Dox-dependent induction/repression in the brain. Interestingly, the daily readout of circadian period in this system provides a real-time readout of the tTA transactivation state in vivo. In summary, the tTA system can manipulate circadian clock gene expression in a tissue-specific, conditional, and reversible manner in the central nervous system. The specific methods developed here should have general applicability for the study of brain and behavior in the mouse.


Assuntos
Comportamento Animal , Encéfalo/metabolismo , Ritmo Circadiano , Vetores Genéticos , Transativadores/metabolismo , Animais , Proteínas CLOCK , Ritmo Circadiano/genética , Doxiciclina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Luz , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Biológicos , Dados de Sequência Molecular , Atividade Motora , Transativadores/genética , Transgenes
3.
Essays Biochem ; 51: 137-60, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22023447

RESUMO

Drug-resistant micro-organisms became widespread in the 20th Century, often with devastating consequences, in response to widespread use of natural and synthetic drugs against infectious diseases. Antimalarial resistance provides one of the earliest examples, following the introduction of new medicines that filled important needs for prophylaxis and treatment around the globe. In the present chapter, we offer a brief synopsis of major antimalarial developments from two natural remedies, the qinghaosu and cinchona bark infusions, and of synthetic drugs inspired by the active components of these remedies. We review some contributions that early efficacy studies of antimalarial treatment brought to clinical pharmacology, including convincing documentation of atebrine-resistant malaria in the 1940s, prior to the launching of what soon became first-choice antimalarials, chloroquine and amodiaquine. Finally, we discuss some new observations on the molecular genetics of drug resistance, including delayed parasite clearances that have been increasingly observed in response to artemisinin derivatives in regions of South-East Asia.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Malária/tratamento farmacológico , Plasmodium/efeitos dos fármacos , Plasmodium/genética , Artemisininas/química , Artemisininas/farmacologia , Sudeste Asiático , Cinchona/química , Resistência a Medicamentos , Haplótipos , Humanos , Malária/parasitologia
4.
Science ; 324(5927): 651-4, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19299583

RESUMO

The circadian clock is encoded by a transcription-translation feedback loop that synchronizes behavior and metabolism with the light-dark cycle. Here we report that both the rate-limiting enzyme in mammalian nicotinamide adenine dinucleotide (NAD+) biosynthesis, nicotinamide phosphoribosyltransferase (NAMPT), and levels of NAD+ display circadian oscillations that are regulated by the core clock machinery in mice. Inhibition of NAMPT promotes oscillation of the clock gene Per2 by releasing CLOCK:BMAL1 from suppression by SIRT1. In turn, the circadian transcription factor CLOCK binds to and up-regulates Nampt, thus completing a feedback loop involving NAMPT/NAD+ and SIRT1/CLOCK:BMAL1.


Assuntos
Relógios Biológicos , Ritmo Circadiano , Citocinas/metabolismo , Retroalimentação Fisiológica , NAD/biossíntese , Nicotinamida Fosforribosiltransferase/metabolismo , Fatores de Transcrição ARNTL , Acrilamidas/farmacologia , Tecido Adiposo Branco/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas CLOCK , Proteínas de Ciclo Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Citocinas/antagonistas & inibidores , Citocinas/genética , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Camundongos , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Nicotinamida Fosforribosiltransferase/genética , Proteínas Nucleares/genética , Proteínas Circadianas Period , Piperidinas/farmacologia , Ligação Proteica , Sirtuína 1 , Sirtuínas/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica
5.
Science ; 314(5803): 1304-8, 2006 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-17124323

RESUMO

The basic helix-loop-helix (bHLH)-Per-Arnt-Sim (PAS) domain transcription factor BMAL1 is an essential component of the mammalian circadian pacemaker. Bmal1-/- mice lose circadian rhythmicity but also display tendon calcification and decreased activity, body weight, and longevity. To investigate whether these diverse functions of BMAL1 are tissue-specific, we produced transgenic mice that constitutively express Bmal1 in brain or muscle and examined the effects of rescued gene expression in Bmal1-/- mice. Circadian rhythms of wheel-running activity were restored in brain-rescued Bmal1-/- mice in a conditional manner; however, activity levels and body weight were lower than those of wild-type mice. In contrast, muscle-rescued Bmal1-/- mice exhibited normal activity levels and body weight yet remained behaviorally arrhythmic. Thus, Bmal1 has distinct tissue-specific functions that regulate integrative physiology.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Encéfalo/metabolismo , Ritmo Circadiano , Atividade Motora , Músculo Esquelético/metabolismo , Fatores de Transcrição ARNTL , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Peso Corporal , Calcinose , Proteínas de Ciclo Celular/genética , Cromossomos Artificiais Bacterianos , Expressão Gênica , Longevidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Nucleares/genética , Especificidade de Órgãos , Proteínas Circadianas Period , Núcleo Supraquiasmático/metabolismo , Tendões/patologia , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA