Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Microb Cell Fact ; 19(1): 73, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32197639

RESUMO

BACKGROUND: Acridone alkaloids are heterocyclic compounds that exhibit a broad-range of pharmaceutical and chemotherapeutic activities, including anticancer, antiviral, anti-inflammatory, antimalarial, and antimicrobial effects. Certain plant species such as Citrus microcarpa, Ruta graveolens, and Toddaliopsis bremekampii synthesize acridone alkaloids from anthranilate and malonyl-CoA. RESULTS: We synthesized two acridones in Escherichia coli. Acridone synthase (ACS) and anthraniloyl-CoA ligase genes were transformed into E. coli, and the synthesis of acridone was examined. To increase the levels of endogenous anthranilate, we tested several constructs expressing proteins involved in the shikimate pathway and selected the best construct. To boost the supply of malonyl-CoA, genes coding for acetyl-coenzyme A carboxylase (ACC) from Photorhabdus luminescens were overexpressed in E. coli. For the synthesis of 1,3-dihydroxy-10-methylacridone, we utilized an N-methyltransferase gene (NMT) to supply N-methylanthranilate and a new N-methylanthraniloyl-CoA ligase. After selecting the best combination of genes, approximately 17.3 mg/L of 1,3-dihydroxy-9(10H)-acridone (DHA) and 26.0 mg/L of 1,3-dihydroxy-10-methylacridone (NMA) were synthesized. CONCLUSIONS: Two bioactive acridone derivatives were synthesized by expressing type III plant polyketide synthases and other genes in E. coli, which increased the supplement of substrates. This study showed that is possible to synthesize diverse polyketides in E. coli using plant polyketide synthases.


Assuntos
Acridonas/metabolismo , Escherichia coli , Aciltransferases/genética , Proteínas de Bactérias/genética , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Microrganismos Geneticamente Modificados/metabolismo , Photorhabdus/enzimologia , Proteínas de Plantas/genética , Policetídeo Sintases/genética , Proteínas Recombinantes/genética
2.
J Agric Food Chem ; 67(31): 8581-8589, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31321975

RESUMO

Intermediates in aromatic amino acid biosynthesis can serve as substrates for the synthesis of bioactive compounds. In this study we used two intermediates in the shikimate pathway of Escherichia coli, chorismate and anthranilate, to synthesize three bioactive compounds: 4-hydroxycoumarin (4-HC), 2,4-dihydroxyquinoline (DHQ), and 4-hydroxy-1-methyl-2(1H)-quinolone (NMQ). We introduced genes for the synthesis of salicylic acid from chorismate to supply the substrate for 4-HC and the gene encoding N-methyltransferase for the synthesis of N-methylanthranilate from anthranilate. Polyketide synthases and coenzyme (Co)A ligases were tested to determine the optimal combination of genes for the synthesis of each compound. We also tested several constructs and identified the best one for increasing levels of endogenous substrates for chorismate, anthranilate, and malonyl-CoA. With the use of these strategies, 255.4 mg/L 4-HC, 753.7 mg/L DHQ, and 17.5 mg/L NMQ were synthesized. This work provides a basis for the synthesis of diverse coumarin and quinoline derivatives with potential medical applications.


Assuntos
4-Hidroxicumarinas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Metabólica , Policetídeo Sintases/genética , Quinolinas/metabolismo , 4-Hidroxicumarinas/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ácido Corísmico/metabolismo , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Photorhabdus/enzimologia , Photorhabdus/genética , Policetídeo Sintases/metabolismo , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/genética , Quinolinas/química , ortoaminobenzoatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA