Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 279
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Crit Rev Microbiol ; 49(2): 214-230, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35634703

RESUMO

Infectious diseases are still public health problems. Microorganisms such as fungi, bacteria, viruses, and parasites are the main causing agents related to these diseases. In this context, the search for new effective strategies in prevention and/or treatment is considered essential, since current drugs often have side effects or end up, causing microbial resistance, making it a serious health problem. As an alternative to these limitations, nanotechnology has been widely used. The use of lipid-based drug delivery nanosystems (DDNs) has some advantages, such as biocompatibility, low toxicity, controlled release, the ability to carry both hydrophilic and lipophilic drugs, in addition to be easel scalable. Besides, as an improvement, studies involving the conjugation of signalling molecules on the surfaces of these nanocarriers can allow the target of certain tissues or cells. Thus, this review summarizes the performance of functionalized lipid-based DDNs for the treatment of infectious diseases caused by viruses, including SARS-CoV-2, bacteria, fungi, and parasites.


Assuntos
COVID-19 , Doenças Transmissíveis , Nanopartículas , Humanos , SARS-CoV-2 , Sistemas de Liberação de Medicamentos , Bactérias , Fungos , Doenças Transmissíveis/tratamento farmacológico , Lipídeos , Nanopartículas/uso terapêutico
2.
Crit Rev Microbiol ; : 1-22, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37897442

RESUMO

Helicobacter pylori is a gram-negative, spiral-shaped, flagellated bacterium that colonizes the stomach of half the world's population. Helicobacter pylori infection causes pathologies of varying severity. Standard oral therapy fails in 15-20% since the barriers of the oral route decrease the bioavailability of antibiotics and the intrinsic factors of bacteria increase the rates of resistance. Nanoparticles and microparticles are promising strategies for drug delivery into the gastric mucosa and targeting H. pylori. The variety of building blocks creates systems with distinct colloidal, surface, and biological properties. These features improve drug-pathogen interactions, eliminate drug depletion and overuse, and enable the association of multiple actives combating H. pylori on several fronts. Nanoparticles and microparticles are successfully used to overcome the barriers of the oral route, physicochemical inconveniences, and lack of selectivity of current therapy. They have proven efficient in employing promising anti-H. pylori compounds whose limitation is oral route instability, such as some antibiotics and natural products. However, the current challenge is the applicability of these strategies in clinical practice. For this reason, strategies employing a rational design are necessary, including in the development of nano- and microsystems for the oral route.

3.
Med Mycol ; 61(2)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36427066

RESUMO

Fungi are becoming increasingly resistant, especially the new strains. Therefore, this work developed nanoemulsions (NE) containing micafungin (MICA), in order to improve its action against infections caused by Candida auris. The NEs were composed of the surfactants polyoxyethylene (20) cetyl ether (Brij 58®)/soy phosphatidylcholine at 10%, sunflower oil/cholesterol at 10%, and 80% PBS. The NEs were characterized by Dynamic Light Scattering (DLS). For the microbiological in vitro evaluation the determination of the minimum inhibitory concentration (MIC), ergosterol/sorbitol, time kill and biofilms tests were performed. Additionally, the antifungal activity was also evaluated in a Galleria mellonella model. The same model was used in order to evaluate acute toxicity. The NE showed a size of ∼ 42.12 nm, a polydispersion index (PDI) of 0.289, and a zeta potential (ZP) of -3.86 mV. NEM had an average size of 41.29 nm, a PDI of 0.259, and a ZP of -4.71 mV. Finally, both nanoemulsions showed good stability in a storage period of 3 months. Although NEM did not show activity in planktonic cells, it exhibited action against biofilm and in the in vivo infection model. In the alternative in vivo model assay, it was possible to observe that both, NEM and free MICA at 0.2 mg/l, was effective against the infection, being that NEM presented a better action. Finally, NEM and free MICA showed no acute toxicity up to 4 mg/l. NEM showed the best activities in in vitro in mature antibiofilm and in alternative in vivo models in G. mellonella. Although, NEs showed to be attractive for MICA transport in the treatment of infections caused by C. auris in vitro and in vivo studies with G. mellonella, further studies should be carried out, in mice, for example.


Candida auris is a fungus that can cause infections in the human body. As it is a microorganism with a high potential for resistance, it is extremely important to develop new therapeutic alternatives. Thus, nanotechnology, the science that studies materials with extremely small sizes, can be considered a promising method in the treatment of these infections.


Assuntos
Antifúngicos , Ergosterol , Animais , Camundongos , Micafungina/farmacologia , Antifúngicos/farmacologia , Testes de Sensibilidade Microbiana/veterinária , Biofilmes
4.
J Appl Toxicol ; 43(10): 1410-1420, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36579752

RESUMO

Cyclodextrins are nanometric cyclic oligosaccharides with amphiphilic characteristics that increase the stability of drugs in pharmaceutical forms and bioavailability, in addition to protecting them against oxidation and UV radiation. Some of their characteristics are low toxicity, biodegradability, and biocompatibility. They are divided into α-, ß-, and γ-cyclodextrins, each with its own particularities. They can undergo surface modifications to improve their performances. Furthermore, their drug inclusion complexes can be made by various methods, including lyophilization, spray drying, magnetic stirring, kneading, and others. Cyclodextrins can solve several problems in drug stability when incorporated into dosage forms (including tablets, gels, films, nanoparticles, and suppositories) and allow better topical biological effects of drugs at administration sites such as skin, eyeballs, and oral, nasal, vaginal, and rectal cavities. However, as they are nanostructured systems and some of them can cause mild toxicity depending on the application site, they must be evaluated for their nanotoxicology and nanosafety aspects. Moreover, there is evidence that they can cause severe ototoxicity, killing cells from the ear canal even when applied by other administration routes. Therefore, they should be avoided in otologic administration and should have their permeation/penetration profiles and the in vivo hearing system integrity evaluated to certify that they will be safe and will not cause hearing loss.


Assuntos
Produtos Biológicos , Ciclodextrinas , Feminino , Humanos , Ciclodextrinas/toxicidade , Preparações Farmacêuticas , Disponibilidade Biológica , Solubilidade
5.
Nanomedicine ; 51: 102689, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37156330

RESUMO

Alzheimer's disease (AD) is an illness that affects people aged 65 or older and affects around 6.5 million in the United States. Resveratrol is a chemical obtained from natural products and it exhibits biological activity based on inhibiting the formation, depolymerization of the amyloid, and decreasing neuroinflammation. Due to the insolubility of this compound; its incorporation in surfactant-based systems was proposed to design an intranasal formulation. A range of systems has been produced by mixing oleic acid, CETETH-20 and water. Polarised light microscopy (PLM), small angle x-ray scattering (SAXS) and transmission electron microscopy (TEM) confirm the initial liquid formulation (F) presented as microemulsion (ME). After dilution, the gelled systems were characterized as hexagonal mesophase and they showed feasibility proprieties. Pharmacological assays performed after intranasal administration showed the ability to improve learning and memory in animals, as well as remission of neuroinflammation via inhibition of interleukin.


Assuntos
Doença de Alzheimer , Cristais Líquidos , Animais , Administração Intranasal , Doença de Alzheimer/tratamento farmacológico , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Espalhamento a Baixo Ângulo , Cristais Líquidos/química , Doenças Neuroinflamatórias , Difração de Raios X
6.
Odontology ; 111(3): 573-579, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36414881

RESUMO

The aim of this research was to develop a chalcone-based endodontic irrigant for cleaning and disinfecting the root canal. Minimal inhibitory concentration (MIC) experiments in C. albicans and E. faecalis strains with different aminochalcones (AM) were carried out, and the compound that presented the best activity against both pathogens was chosen. The formulation of an endodontic irrigant was elaborated, tested in mono and dual specie biofilms. Disks were sterilized and then incubated with E. faecalis, C. albicans and E. faecalis and C. albicans mixed for 72 h for biofilm maturation. After contamination, samples were divided in 4 experimental groups and 2 positive control group as follows: Group1: Irrigant; Group2: Irrigant + AM-38; Group3: Chlorhexidine 2% (positive control) and, Group 4: 1.0% sodium hypochlorite (positive control). The samples were analyzed by CFU/ml count. The sample was taken to sonicador to remove the cells and then plated. The toxicity was determined in vitro with human gingival fibroblast cells (HGF) and in vivo using the Galleria mellonella model. Formulation showed antimicrobial activity, with MIC on C. albicans 15.6 and E. faecalis 7.8 µg/ml. Treatment with formulation in concentration 156 µg/ml significantly reduced mono or dual species biofilm formation and viability (p < 0.05). The results were significant against C. albicans and E. faecalis and did not show toxicity in cells and G. mellonella. In general, the formulation showed effective antibiofilm activity, significantly reducing microorganisms, opening paths in search of new endodontic irrigants.


Assuntos
Candida albicans , Chalconas , Humanos , Enterococcus faecalis , Chalconas/farmacologia , Irrigantes do Canal Radicular/farmacologia , Hipoclorito de Sódio/farmacologia , Biofilmes , Cavidade Pulpar
7.
Crit Rev Microbiol ; 48(2): 161-196, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34432563

RESUMO

Infectious diseases are one of the leading cause of mortality and morbidity worldwide. Metal-Organic Frameworks (MOFs), which are porous coordination materials composed of bridging organic ligands and metallic ions or clusters, exhibits great potential to be used against several pathogens, such as bacteria, viruses, fungi and protozoa. MOFs can show sustained release capability, high surface area, adjustable pore size and structural flexibility, which makes them good candidates for new therapeutic systems. This review provides a detailed summary of the biological application of MOFs, focussing on diagnosis and treatment of infectious diseases. MOFs have been reported for usage as antimicrobial agents, drug delivery systems, therapeutic composites, nanozymes and phototherapies. Furthermore, different MOF-based biosensors have also been developed to detect specific pathogens by electrochemical, fluorometric and colorimetric assays. Finally, we present limitations and perspectives in this field.


Assuntos
Doenças Transmissíveis , Estruturas Metalorgânicas , Bactérias/genética , Doenças Transmissíveis/diagnóstico , Doenças Transmissíveis/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Humanos , Estruturas Metalorgânicas/química , Porosidade
8.
Bioorg Chem ; 120: 105600, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35078048

RESUMO

Peroxisome proliferator-activated receptors are promising therapeutic targets for metabolic diseases, including obesity, diabetes, and dyslipidemia. This study describes the design, synthesis and pharmacological evaluation of stilbene-based compounds as dual PPARα/γ partial agonists with potency in the nanomolar range. In vitro and in vivo assays revealed that the lead compound (E)-4-styrylphenoxy-propanamide (5b) removed 14C-cholesterol from the foam cells through apolipoprotein A-I and High-Density Lipoprotein-2. In the high-fat diet-induced obesity mouse model, the oral administration of compound 5b increased HDL levels, paraoxonase-1 activity, and insulin sensitivity, and decreased glucose levels. Moreover, the adipogenesis pathway and triglyceride accumulation slightly changed in the adipocyte cells upon treatment with compound 5b, without affecting the body weight and adipose tissue in obese mice. Compound 5b did not affect the plasma levels of hepatic and renal injury biomarkers. Thus, stilbene-based compound 5b is a promising prototype for developing novel candidates to treat dyslipidemia and diabetes.


Assuntos
Diabetes Mellitus , Dislipidemias , Estilbenos , Adipogenia , Animais , Colesterol , Dieta Hiperlipídica/efeitos adversos , Dislipidemias/tratamento farmacológico , Glucose/metabolismo , Lipoproteínas HDL/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , PPAR alfa/agonistas , Estilbenos/uso terapêutico
9.
Planta Med ; 88(5): 405-415, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33511621

RESUMO

Myrcia bella is a medicinal plant used for the treatment of diabetes, hemorrhages, and hypertension in Brazilian folk medicine. Considering that plant extracts are attractive sources of new drugs, the aim of the present study was to verify the influence of incorporating 70% hydroalcoholic of M. bella leaves in nanostructured lipid systems on the mutagenic and antifungal activities of the extract. In this work, we evaluated the antifungal potential of M. bella loaded on the microemulsion against Candida sp for minimum inhibitory concentration, using the microdilution technique. The system was composed of polyoxyethylene 20 cetyl ether and soybean phosphatidylcholine (10%), grape seed oil, cholesterol (10%: proportion 5/1), and purified water (80%). To investigate the mutagenic activity, the Ames test was used with the Salmonella Typhimurium tester strains. M. bella, either incorporated or free, showed an important antifungal effect against all tested strains. Moreover, the incorporation surprisingly inhibited the mutagenicity presented by the extract. The present study attests the antimicrobial properties of M. bella extract, contributing to the search for new natural products with biological activities and suggesting caution in its use for medicinal purposes. In addition, the results emphasize the importance of the use of nanotechnology associated with natural products as a strategy for the control of infections caused mainly by the genus Candida sp.


Assuntos
Myrtaceae , Plantas Medicinais , Antifúngicos/farmacologia , Mutagênicos , Extratos Vegetais/farmacologia
10.
Phytother Res ; 36(1): 147-163, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34559416

RESUMO

Piperine (PIP) is an alkaloid found primarily in Piper longum, and this natural compound has been shown to exert effects on proliferation and survival against various types of cancer. In particular, PIP has potent inhibitory effects on breast cancer (BC), the most prevalent type of cancer in women worldwide. PIP targets numerous signaling pathways associated with the therapy of BC cells through the following mechanisms: (a) induction of arrest of the cell cycle and apoptosis; (b) alteration of the signaling protein expression; (c) reduction in transcription factors; and (d) inhibition of tumor growth. BC cells have the ability to resist conventional drugs, so one of the strategies is the combination of PIP with other phytochemicals such as paclitaxel, thymoquinone, hesperidin, bee venom, tamoxifen, mitoxantrone, piperlongumin, and curcumin. Nanotechnology-based drug encapsulation systems are currently used to enhance the release of PIP. This includes polymer nanoparticles, carbon nanotubes, and liposomes. In the present review, the chemistry and bioavailability of PIP, its molecular targets in BC, and nanotechnological strategies are discussed. Future research directions are also discussed to further understand this promising natural product.


Assuntos
Alcaloides , Antineoplásicos , Neoplasias da Mama , Nanotubos de Carbono , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Benzodioxóis , Neoplasias da Mama/tratamento farmacológico , Feminino , Humanos , Piperidinas , Alcamidas Poli-Insaturadas
11.
Phytother Res ; 36(7): 2710-2745, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35643985

RESUMO

Fungal infections are one of the main public health problems, especially in immunocompromised patients, nosocomial environments, patients with chronic diseases, and transplant recipients. These diseases are increasingly frequent and lethal because the microorganism has a high capacity to acquire resistance to available therapy. The main resistance factors are the emergence of new strains and the uncontrolled use of antifungals. It is, therefore, important to develop new methods that contribute to combating fungal diseases in the clinical area. Natural products have considerable potential for the development of new drugs with antifungal activity, mainly due to their biocompatibility and low toxic effect. This promising antimicrobial activity of natural products is mainly due to the presence of flavonoids, terpenes, and quinones, which explains their antifungal potential. Pharmaceutical nanotechnology has been explored to enhance the delivery, selectivity, and clinical efficacy of these products. Nanotechnological systems provide a safe and selective environment for various substances, such as natural products, improving antifungal activity. However, further safety experiments (in vivo or clinical trials) need to be carried out to prove the therapeutic action of natural products, since they may have undesirable, toxic, and mutagenic effects. Therefore, this review article addresses the main nanotechnological methods using natural products for effective future treatment against the main fungal diseases.


Assuntos
Produtos Biológicos , Micoses , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Humanos , Micoses/tratamento farmacológico , Micoses/microbiologia , Nanomedicina , Terpenos/uso terapêutico
12.
Lasers Med Sci ; 37(3): 1775-1786, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34664132

RESUMO

To assess the effect of curcumin-encapsulated Pluronic® F-127 (Cur-Plu) during antimicrobial photodynamic therapy (aPDT) over duo-species biofilm of Streptococcus mutans and Candida albicans. Thermal analysis, optical absorption, and fluorescence spectroscopy were evaluated. Minimum inhibitory concentration (MIC) and minimum bactericidal/fungal concentration were obtained. The biofilms were cultured for 48 h at 37 °C and treated according to the groups: P + M + L + (photosensitizer encapsulated with Pluronic® F-127 + light); P + D + L + (photosensitizer incorporated in 1% DMSO + light); P - M + L + (no Pluronic® F-127 + light); P - D + L + (1% DMSO + light); P - L + (Milli-Q water + light); P + M + L - (photosensitizer encapsulated with Pluronic® F-127 no light); P + D + L - (photosensitizer in 1% DMSO, no light); P - M + L - (Pluronic® F-127 no light); P - D + L - (1% DMSO, no light); P - L - (Milli-Q water, no light; negative control group); CHX (0.2% chlorhexidine, positive control group); and NYS (Nystatin). Dark incubation of 5 min was used. The groups that received aPDT were irradiated by blue LED (460 nm, 15 J/cm2). Cell viability of the biofilms was performed by colony-forming units (CFU/mL) and confocal microscopy. Two-way ANOVA followed by Tukey's post hoc test was used at a significance level of 5%. P + D + L + and P + M + L + groups exhibited better log-reduction for both Candida albicans and Streptococcus mutans biofilms than P - M + L + , P - L + , and P - D + L + experimental groups. Furthermore, P + M + L + and P + D + L + showed greater reduction for Candida albicans than for Streptococcus mutans. aPDT mediated by Cur-Plu can be a potential strategy for biofilm control against duo-species biofilm of Streptococcus mutans and Candida albicans.


Assuntos
Curcumina , Fotoquimioterapia , Biofilmes , Candida albicans , Curcumina/farmacologia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Poloxâmero/farmacologia , Streptococcus mutans
13.
J Microencapsul ; 39(1): 61-71, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34984941

RESUMO

This study aimed to encapsulate and characterise a potential anti-tuberculosis copper complex (CuCl2(INH)2.H2O:I1) into polymeric nanoparticles (PNs) of polymethacrylate copolymers (Eudragit®, Eu) developed by nanoprecipitation method. NE30D, S100 and, E100 polymers were tested. The physicochemical characterisations were performed by DLS, TEM, FTIR, encapsulation efficiency and, in vitro release studies. Encapsulation of I1 in PN-NE30D, PN-E100, and PN-S100 was 26.3%, 94.5%, 22.6%, respectively. The particle size and zeta potentials were 82.3 nm and -24.5 mV for PNs-NE30D, 304.4 nm and +18.7 mV for PNs-E100, and 517.9 nm and -6.9 mV for PNs-S100, respectively. All PDIs were under 0.5. The formulations showed an I1 controlled release at alkaline pH with 29.7% from PNs-NE30D, 7.9% from PNs-E100 and, 28.1% from PNs-S100 at 1 h incubation. PNs were stable for at least 3 months. Particularly, PNs-NE30D demonstrated moderate inhibition of M. tuberculosis and low cytotoxic activity. None of the PNs induced mutagenicity.


Assuntos
Cobre , Nanopartículas , Antibacterianos , Cobre/farmacologia , Mutagênicos , Tamanho da Partícula , Polímeros
14.
Molecules ; 27(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36500650

RESUMO

Commonly found colonizing the human microbiota, Candida albicans is a microorganism known for its ability to cause infections, mainly in the vulvovaginal region known as vulvovaginal candidiasis (VVC). This pathology is, in fact, one of the main C. albicans clinical manifestations, changing from a colonizer to a pathogen. The increase in VVC cases and limited antifungal therapy make C. albicans an increasingly frequent risk in women's lives, especially in immunocompromised patients, pregnant women and the elderly. Therefore, it is necessary to develop new therapeutic options, especially those involving natural products associated with nanotechnology, such as lycopene and mesoporous silica nanoparticles. From this perspective, this study sought to assess whether lycopene, mesoporous silica nanoparticles and their combination would be an attractive product for the treatment of this serious disease through microbiological in vitro tests and acute toxicity tests in an alternative in vivo model of Galleria mellonella. Although they did not show desirable antifungal activity for VVC therapy, the present study strongly encourages the use of mesoporous silica nanoparticles impregnated with lycopene for the treatment of other human pathologies, since the products evaluated here did not show toxicity in the in vivo test performed, being therefore, a topic to be further explored.


Assuntos
Candidíase Vulvovaginal , Fluconazol , Feminino , Humanos , Gravidez , Idoso , Candida , Dióxido de Silício/uso terapêutico , Licopeno/farmacologia , Licopeno/uso terapêutico , Candidíase Vulvovaginal/tratamento farmacológico , Candidíase Vulvovaginal/microbiologia , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candida albicans , Testes de Sensibilidade Microbiana
15.
Molecules ; 27(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36500596

RESUMO

Since lycopene has antioxidant activity, its combination with metformin may be useful to contrast diabetic complications related to oxidative stress. This study aimed to investigate the effects of metformin combined with lycopene on high-fat diet (HFD)-induced obese mice. Seventy-two C57BL-6J mice were divided into six groups: C (control diet-fed mice), H (HFD-fed mice for 17 weeks), H-V (HFD-fed mice treated with vehicle), H-M (HFD-fed mice treated with 50 mg/kg metformin), H-L (HFD-fed mice treated with 45 mg/kg lycopene), and H-ML (HFD-fed mice treated with 50 mg/kg metformin + 45 mg/kg lycopene). Treatments were administered for 8 weeks. Glucose tolerance, insulin sensitivity, fluorescent AGEs (advanced glycation end products), TBARS (thiobarbituric acid-reactive substances), and activities of antioxidant enzymes paraoxonase-1 (PON-1; plasma), superoxide dismutase, catalase and glutathione peroxidase (liver and kidneys) were determined. Metformin plus lycopene reduced body weight; improved insulin sensitivity and glucose tolerance; and decreased AGEs and TBARS in plasma, liver and kidneys. Combined therapy significantly increased the activities of antioxidant enzymes, mainly PON-1. Lycopene combined with metformin improved insulin resistance and glucose tolerance, and caused further increases in endogenous antioxidant defenses, arising as a promising therapeutic strategy for combating diabetic complications resulting from glycoxidative stress.


Assuntos
Resistência à Insulina , Metformina , Camundongos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Metformina/farmacologia , Camundongos Obesos , Licopeno/farmacologia , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Substâncias Reativas com Ácido Tiobarbitúrico , Dieta Hiperlipídica/efeitos adversos , Glucose/farmacologia
16.
AAPS PharmSciTech ; 23(4): 104, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35381947

RESUMO

Herein, we developed an ethosomal hydrogel based on three types of ethosomes: simple, mixed (surfactant-based micelles and lipid vesicles) or binary (comprising two type of alcohols). Ethanol injection was employed for vesicles preparation, and sodium alginate, as gelling agent. We purposed the local-transdermal administration of the off-the-shelf retinoid fenretinide (FENR) for chemoprevention of breast cancer. Rheograms and flow index values for alginate dispersion (without ethosomes) and hydrogels containing simple, mixed or binary ethosomes suggested pseudoplastic behavior. An increase in the apparent viscosity was observed upon ethosome incorporation. The ethosomal hydrogel displayed increased bioadhesion compared to the alginate dispersion, suggesting that the lipid vesicles contribute to the gelling and bioadhesion processes. In the Hen's Egg Test-Chorioallantoic Membrane model, few spots of lysis and hemorrhage were observed for formulations containing simple (score of 2) and mixed vesicles (score 4), but not for the hydrogel based on the binary system, indicating its lower irritation potential. The binary ethosomal hydrogel provided a slower FENR in vitro release and delivered 2.6-fold less drug into viable skin layers compared to the ethosome dispersion, supporting the ability of the gel matrix to slow down drug release. The ethosomal hydrogel decreased by ~ five-fold the IC50 values of FENR in MCF-7 cells. In conclusion, binary ethosomal gels presented technological advantages, provided sustained drug release and skin penetration, and did not preclude drug cytotoxic effects, supporting their potential applicability as topical chemopreventive systems.


Assuntos
Neoplasias da Mama , Fenretinida , Administração Cutânea , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/prevenção & controle , Galinhas/metabolismo , Sistemas de Liberação de Medicamentos , Feminino , Fenretinida/metabolismo , Fenretinida/farmacologia , Humanos , Hidrogéis/metabolismo , Lipossomos/metabolismo , Pele/metabolismo , Absorção Cutânea
17.
AAPS PharmSciTech ; 23(7): 269, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36171494

RESUMO

Polymeric films are drug delivery systems that maintain contact with the delivery tissue and sustain a controlled release of therapeutic molecules. These systems allow a longer time of drug contact with the target site in the case of topical treatments and allow the controlled administration of drugs. They can be manufactured by various methods such as solvent casting, hot melt extrusion, electrospinning, and 3D bioprinting. Furthermore, they can employ various polymers, for example PVP, PVA, cellulose derivatives, chitosan, gelling gum, pectin, and alginate. Its versatility is also applicable to different routes of administration, as it can be administered to the skin, oral mucosa, vaginal canal, and eyeballs. All these factors allow numerous combinations to obtain a better treatment. This review focuses on exploring some possible ways to develop them and some particularities and advantages/disadvantages in each case. It also aims to show the versatility of these systems and the advantages and disadvantages in each case, as they bring the opportunity to develop different medicines to facilitate therapies for the most diverse purposes .


Assuntos
Quitosana , Alginatos , Celulose , Preparações de Ação Retardada , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Pectinas , Polímeros , Solventes
18.
Crit Rev Microbiol ; 47(4): 435-460, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33725462

RESUMO

Due to the high adaptability of Helicobacter pylori and the low targeting specificity of the drugs normally used in pharmacological therapy, the strains are becoming increasingly resistant to these drugs, making it difficult to eradicate the infection. Thus, the search for new therapeutic approaches has been considered urgent. The incorporation of drugs in advanced drug delivery systems, such as nano and microparticles, would allow the improvement of the retention time in the stomach and the prolongation of drug release rates at the target site. Because of this, the present review article aims to highlight the use of micro and nanoparticles as important technological tools for the treatment of H. pylori infections, focussing on the main nanotechnological systems, including nanostructured lipid carriers, liposomes, nanoemulsion, metallic nanoparticles, and polymeric nanoparticles, as well as microtechnological systems such as gastroretentive dosage forms, among them mucoadhesive, magnetic and floating systems were highlighted.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Infecções por Helicobacter/tratamento farmacológico , Animais , Sistemas de Liberação de Medicamentos/instrumentação , Infecções por Helicobacter/microbiologia , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/genética , Helicobacter pylori/fisiologia , Humanos , Nanopartículas/química
19.
Crit Rev Microbiol ; 47(1): 79-90, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33156736

RESUMO

Several types of cutaneous fungal infections can affect the population worldwide, such as dermatophytosis, cutaneous candidiasis, onychomycosis, and sporotrichosis. However, oral treatments have pronounced adverse effects, making the topical route an alternative to avoid this disadvantage. On the other hand, currently available pharmaceutical forms designed for topical application, such as gels and creams, do not demonstrate effective retention of biomolecules in the upper layers of the skin. An interesting approach to optimise biomolecules' activity in the skin is the use of nanosystems for drug delivery, especially solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC), which in the past decade has shown advantages like increased adhesiveness, great occlusive properties and higher biomolecule deposition in stratum corneum when designed for topical application. Considering the demand for more effective therapeutic alternatives and the promising characteristics of SLN and NLC for topical application, the present study sought to gather studies that investigated the potential of using SLN and NLC for the treatment of cutaneous fungal infections. Studies demonstrated that these nanosystems showed optimisation, mostly, of the effectiveness of biomolecules besides other biopharmaceutical properties, in addition to offering potential occlusion and hydration of the applied region.


Assuntos
Antifúngicos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Fungos/efeitos dos fármacos , Micoses/tratamento farmacológico , Nanopartículas/química , Dermatopatias/tratamento farmacológico , Animais , Antifúngicos/química , Sistemas de Liberação de Medicamentos/instrumentação , Fungos/fisiologia , Humanos , Micoses/microbiologia , Dermatopatias/microbiologia
20.
Med Mycol ; 59(10): 946-957, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34137857

RESUMO

Vulvovaginal candidiasis (CVV) is a condition in which signs and symptoms are related to inflammation caused by Candida spp infection. It is the second leading cause of vaginitis in the world, representing a public health problem. The present systematic review comes with the proposal of analyze and identify the available evidence on CVV prevalence in Brazil, pointing out its variability by regions. For this, a systematic literature review was carried out with meta-analysis of cross-sectional and cohort studies, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyzes (PRISMA) guide recommendations, and was registered in the International Prospective Register of Systematic Reviews (PROSPERO 2020 CRD42020181695). The databases used for survey were LILACS, Scielo, Scopus, PUBMED, Web of Science and CINAHL. Fifteen studies were selected to estimate CVV prevalence in the Brazilian territory. South and Southeast regions have higher prevalences than the North and Northeast regions, no data were found for the Midwest region. The estimated prevalence for Brazil is 18%, however, it is suggested that this number is higher due to underreporting and the presence of asymptomatic cases. Therefore, new epidemiological studies are recommended throughout Brazil, to elucidate the profile of this disease in the country, in addition to assisting in the elaboration of an appropriate prevention plan by state. LAY SUMMARY: Data found in the literature regarding the epidemiological profile of vulvovaginal candidiasis in Brazil are obsolete and incomplete, so the present systematic review has the proposal to analyze and identify the evidence on vulvovaginal candidiasis prevalence in Brazil. The estimated prevalence is 18%; however, this number can be higher.


Assuntos
Candidíase Vulvovaginal , Candidíase , Animais , Brasil/epidemiologia , Candidíase/veterinária , Candidíase Vulvovaginal/epidemiologia , Candidíase Vulvovaginal/veterinária , Estudos Transversais , Feminino , Prevalência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA