Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36769343

RESUMO

To explore changes in proteins and metabolites under stress circumstances, genomics, proteomics, and metabolomics methods are used. In-depth research over the previous ten years has gradually revealed the fundamental processes of plants' responses to environmental stress. Abiotic stresses, which include temperature extremes, water scarcity, and metal toxicity brought on by human activity and urbanization, are a major cause for concern, since they can result in unsustainable warming trends and drastically lower crop yields. Furthermore, there is an emerging reliance on agrochemicals. Stress is responsible for physiological transformations such as the formation of reactive oxygen, stomatal opening and closure, cytosolic calcium ion concentrations, metabolite profiles and their dynamic changes, expression of stress-responsive genes, activation of potassium channels, etc. Research regarding abiotic stresses is lacking because defense feedbacks to abiotic factors necessitate regulating the changes that activate multiple genes and pathways that are not properly explored. It is clear from the involvement of these genes that plant stress response and adaptation are complicated processes. Targeting the multigenicity of plant abiotic stress responses caused by genomic sequences, transcripts, protein organization and interactions, stress-specific and cellular transcriptome collections, and mutant screens can be the first step in an integrative approach. Therefore, in this review, we focused on the genomes, proteomics, and metabolomics of tomatoes under abiotic stress.


Assuntos
Proteômica , Solanum lycopersicum , Humanos , Solanum lycopersicum/genética , Genômica , Plantas/metabolismo , Metabolômica , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
2.
Plant Biotechnol J ; 18(11): 2225-2240, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32181964

RESUMO

Cytokinin group of phytohormones regulate root elongation and branching during post-embryonic development. Cytokinin-degrading enzymes cytokinin oxidases/dehydrogenases (CKXs) have been deployed to investigate biological activities of cytokinin and to engineer root growth. We expressed chickpea cytokinin oxidase 6 (CaCKX6) under the control of a chickpea root-specific promoter of CaWRKY31 in Arabidopsis thaliana and chickpea having determinate and indeterminate growth patterns, respectively, to study the effect of cytokinin depletion on root growth and drought tolerance. Root-specific expression of CaCKX6 led to a significant increase in lateral root number and root biomass in Arabidopsis and chickpea without any penalty to vegetative and reproductive growth of shoot. Transgenic chickpea lines showed increased CKX activity in root. Soil-grown advanced chickpea transgenic lines exhibited higher root-to-shoot biomass ratio and enhanced long-term drought tolerance. These chickpea lines were not compromised in root nodulation and nitrogen fixation. The seed yield in some lines was up to 25% higher with no penalty in protein content. Transgenic chickpea seeds possessed higher levels of zinc, iron, potassium and copper. Our results demonstrated the potential of cytokinin level manipulation in increasing lateral root number and root biomass for agronomic trait improvement in an edible legume crop with indeterminate growth habit.


Assuntos
Cicer , Cicer/genética , Secas , Oxirredutases , Raízes de Plantas
3.
Microbiol Resour Announc ; 12(7): e0041323, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37338399

RESUMO

We present the draft genome sequence of Streptomyces sp. strain AJ-1, which was isolated from a leafcutter ant found in Uttarakhand, India. The genome assembly resulted in 43 contigs, with a combined length of 6,948,422 bp and a GC content of 73.5%. Through genome annotation, we identified 5,951 protein-coding genes and 67 tRNA genes.

4.
ACS Infect Dis ; 9(12): 2369-2385, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-37944023

RESUMO

Tuberculosis (TB) is a global health threat that causes significant mortality. This review explores chemotherapeutics that target essential processes in Mycobacterium tuberculosis, such as DNA replication, protein synthesis, cell wall formation, energy metabolism, and proteolysis. We emphasize the need for new drugs to treat drug-resistant strains and shorten the treatment duration. Emerging targets and promising inhibitors were identified by examining the intricate biology of TB. This review provides an overview of recent developments in the search for anti-TB drugs with a focus on newly validated targets and inhibitors. We aimed to contribute to efforts to combat TB and improve therapeutic outcomes.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Humanos , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Antituberculosos/metabolismo , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Replicação do DNA
5.
Biosens Bioelectron ; 228: 115195, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36931192

RESUMO

Typhoid fever is an acute illness caused by Salmonella Typhi and the current diagnostic gap leads to inaccurate, over-diagnosis of typhoid leading to excessive use of antibiotics. Herein, to address the challenges we describe a new rapid color-shift assay based on a novel bifunctional nanobioprobe (Vi-AgNP probe) that is functionalized with specific biomarker Vi polysaccharide and also has the co-presence of Ag as urease inhibitor. The immunoreactions between the Vi with specific antibodies (Abs) present in typhoid patient sample forms a shielding barrier over Vi-AgNP probe rendering the urease to be active, generating colored output. Vi polysaccharide coating on the AgNP was visualized using HRTEM. TEM was performed to get insight into shielding barrier formation by the Abs. MST (microscale thermophoresis) data showed less binding Kd of 7.43 µM in presence of Abs whereas probe with urease showed efficient binding with Kd 437 nM. The assay was validated using 53 human sera samples and proven effective with 100% sensitivity. The assay showed relative standard deviation (RSD) of 4.3% estimated using rabbit anti-Vi Abs. The entire procedure could be completed within 15 min. Unlike lateral flow based assays, our assay does not require multiple combination of Abs for detection. The assay format was also found compatible in paper strip test that provides promising opportunities to develop low-cost on-spot assay for clinical diagnostics.


Assuntos
Técnicas Biossensoriais , Febre Tifoide , Animais , Humanos , Coelhos , Anticorpos Antibacterianos , Polissacarídeos Bacterianos , Salmonella typhi , Febre Tifoide/diagnóstico , Urease
6.
Sci Rep ; 12(1): 12661, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35879329

RESUMO

One of the key enzymes utilized in the food industry is pullulanase. But its major drawbacks are its low yield and high production costs. In this regard, the current research aims to screen agro-waste substrates for optimal pullulanase production in solid-state fermentation. Of various agro-wastes used as a substrate, the maximum enzymic activity (9.74 U/gds) was observed in a medium based on 5 g of green gram husk and incubated for 3 days at 30 °C. The effects of 16 different nutrients on the yield of pullulanase production were studied using the Plackett-Burman experimental design. The incorporation of FeSO4, MnSO4, and MgSO4 into the pullulanase production medium significantly increased the yield and showed a 5.7-fold increase (56.25 U/gds) in comparison with the unoptimized media. The Box-Behnken experimental design was used to study the effect of interactions between Fe2+, Mg2+, and Mn2+ on the production of pullulanase. Box-Behnken showed a 1.1-fold increase (62.1 U/gds) in pullulanase production. The total increase in yield after all optimization was 6.37-fold. The present study reports for the first time the applicability of green gram husk as a potent substrate for pullulanase production by Penicillium viridicatum.


Assuntos
Penicillium , Fermentação , Glicosídeo Hidrolases
7.
Front Microbiol ; 13: 1061603, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36532457

RESUMO

Excessive antibiotic prescriptions as well as their misuse in agriculture are the main causes of antimicrobial resistance which poses a growing threat to public health. It necessitates the search for novel chemicals to combat drug resistance. Since ancient times, naturally occurring medicines have been employed and the enormous variety of bioactive chemicals found in nature has long served as an inspiration for researchers looking for possible therapeutics. Secondary metabolites from microorganisms, particularly those from actinomycetes, have made it incredibly easy to find new molecules. Different actinomycetes species account for more than 70% of naturally generated antibiotics currently used in medicine, and they also produce a variety of secondary metabolites, including pigments, enzymes, and anti-inflammatory compounds. They continue to be a crucial source of fresh chemical diversity and a crucial component of drug discovery. This review summarizes some uncommon sources of antifungal metabolites and highlights the importance of further research on these unusual habitats as a source of novel antimicrobial molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA