Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Immunity ; 55(1): 65-81.e9, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34767747

RESUMO

Antigenic stimulation promotes T cell metabolic reprogramming to meet increased biosynthetic, bioenergetic, and signaling demands. We show that the one-carbon (1C) metabolism enzyme methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) regulates de novo purine synthesis and signaling in activated T cells to promote proliferation and inflammatory cytokine production. In pathogenic T helper-17 (Th17) cells, MTHFD2 prevented aberrant upregulation of the transcription factor FoxP3 along with inappropriate gain of suppressive capacity. MTHFD2 deficiency also promoted regulatory T (Treg) cell differentiation. Mechanistically, MTHFD2 inhibition led to depletion of purine pools, accumulation of purine biosynthetic intermediates, and decreased nutrient sensor mTORC1 signaling. MTHFD2 was also critical to regulate DNA and histone methylation in Th17 cells. Importantly, MTHFD2 deficiency reduced disease severity in multiple in vivo inflammatory disease models. MTHFD2 is thus a metabolic checkpoint to integrate purine metabolism with pathogenic effector cell signaling and is a potential therapeutic target within 1C metabolism pathways.


Assuntos
Inflamação/imunologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Metilenotetra-Hidrofolato Desidrogenase (NADP)/metabolismo , Purinas/biossíntese , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Animais , Diferenciação Celular , Citocinas/metabolismo , Metilação de DNA , Modelos Animais de Doenças , Humanos , Mediadores da Inflamação/metabolismo , Ativação Linfocitária , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Camundongos , Camundongos Transgênicos , Mutação/genética , Transdução de Sinais
2.
J Immunol ; 206(6): 1127-1139, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33558372

RESUMO

T effector cells promote inflammation in asthmatic patients, and both Th2 and Th17 CD4 T cells have been implicated in severe forms of the disease. The metabolic phenotypes and dependencies of these cells, however, remain poorly understood in the regulation of airway inflammation. In this study, we show the bronchoalveolar lavage fluid of asthmatic patients had markers of elevated glucose and glutamine metabolism. Further, peripheral blood T cells of asthmatics had broadly elevated expression of metabolic proteins when analyzed by mass cytometry compared with healthy controls. Therefore, we hypothesized that glucose and glutamine metabolism promote allergic airway inflammation. We tested this hypothesis in two murine models of airway inflammation. T cells from lungs of mice sensitized with Alternaria alternata extract displayed genetic signatures for elevated oxidative and glucose metabolism by single-cell RNA sequencing. This result was most pronounced when protein levels were measured in IL-17-producing cells and was recapitulated when airway inflammation was induced with house dust mite plus LPS, a model that led to abundant IL-4- and IL-17-producing T cells. Importantly, inhibitors of the glucose transporter 1 or glutaminase in vivo attenuated house dust mite + LPS eosinophilia, T cell cytokine production, and airway hyperresponsiveness as well as augmented the immunosuppressive properties of dexamethasone. These data show that T cells induce markers to support metabolism in vivo in airway inflammation and that this correlates with inflammatory cytokine production. Targeting metabolic pathways may provide a new direction to protect from disease and enhance the effectiveness of steroid therapy.


Assuntos
Asma/tratamento farmacológico , Dexametasona/farmacologia , Transportador de Glucose Tipo 1/antagonistas & inibidores , Glutaminase/antagonistas & inibidores , Imunossupressores/farmacologia , Adulto , Alternaria/imunologia , Animais , Asma/sangue , Asma/imunologia , Biomarcadores/análise , Biomarcadores/metabolismo , Glicemia/metabolismo , Líquido da Lavagem Broncoalveolar/imunologia , Estudos de Casos e Controles , Células Cultivadas , Dexametasona/uso terapêutico , Modelos Animais de Doenças , Sinergismo Farmacológico , Feminino , Transportador de Glucose Tipo 1/metabolismo , Glutaminase/metabolismo , Glutamina/metabolismo , Voluntários Saudáveis , Humanos , Imunossupressores/uso terapêutico , Pulmão/citologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Masculino , Camundongos , Pessoa de Meia-Idade , Cultura Primária de Células , Pyroglyphidae/imunologia , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Células Th17/metabolismo , Células Th2/efeitos dos fármacos , Células Th2/imunologia , Células Th2/metabolismo , Adulto Jovem
3.
J Cancer Res Clin Oncol ; 149(13): 11969-11978, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37421453

RESUMO

PURPOSE: Only a fraction of low-grade cervical intraepithelial neoplasia (CIN) progresses to high-grade CIN; however, the biological processes that differentiate progressive CIN from CIN that resolves naturally are poorly understood. MicroRNAs (miRNAs) are important epigenetic regulators of gene expression and thus, miRNA expression profiling can reveal the dysregulated biology underlying disease processes. The purpose of this case-control study was to reveal miRNA expression patterns and predict the underlying biological pathways that are associated with clinical outcomes of low-grade CIN. METHODS: Women with low-grade CIN diagnosis and definitive clinical outcomes (n = 51) were identified retrospectively using electronic clinical records. Comprehensive miRNA expression profiling was performed on the low-grade CIN diagnostic cervical biopsies retrieved from pathology archives. Differential miRNA expression was analyzed by comparing women with CIN that progressed to women with CIN that resolved naturally. RESULTS: Differential expression of 29 miRNAs was observed in low-grade CIN that progressed to high-grade compared to low-grade CIN that resolved. Of these, 24 were significantly downregulated in progressive CIN, including miR-638, miR-3196, miR-4488, and miR-4508, while 5 miRNAs, including miR-1206a, were significantly upregulated. Computational gene ontology analysis based on the discovered miRNAs and their putative mRNA targets revealed biological processes associated with oncogenic phenotypes. CONCLUSION: Distinct miRNA expression profiles are associated with clinical outcomes of low-grade CIN. The functional effects of the differentially expressed miRNAs may be biological determinants of CIN progression or resolution.


Assuntos
MicroRNAs , Displasia do Colo do Útero , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Estudos de Casos e Controles , Estudos Retrospectivos , Regulação Neoplásica da Expressão Gênica , Displasia do Colo do Útero/patologia , MicroRNAs/genética , MicroRNAs/metabolismo
4.
J Clin Invest ; 132(4)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35025767

RESUMO

Women have higher prevalence of asthma compared with men. In asthma, allergic airway inflammation is initiated by IL-33 signaling through ST2, leading to increased IL-4, IL-5, and IL-13 production and eosinophil infiltration. Foxp3+ Tregs suppress and ST2+ Tregs promote allergic airway inflammation. Clinical studies showed that the androgen dehydroepiandrosterone (DHEA) reduced asthma symptoms in patients, and mouse studies showed that androgen receptor (AR) signaling decreased allergic airway inflammation. Yet the impact of AR signaling on lung Tregs remains unclear. Using AR-deficient and Foxp3 fate-mapping mice, we determined that AR signaling increased Treg suppression during Alternaria extract (Alt Ext; allergen) challenge by stabilizing Foxp3+ Tregs and limiting the number of ST2+ ex-Tregs and IL-13+ Th2 cells and ex-Tregs. AR signaling also decreased Alt Ext-induced ST2+ Tregs in mice by limiting expression of Gata2, a transcription factor for ST2, and by decreasing Alt Ext-induced IL-33 production from murine airway epithelial cells. We confirmed our findings in human cells where 5α-dihydrotestosterone (DHT), an androgen, decreased IL-33-induced ST2 expression in lung Tregs and decreased Alt Ext-induced IL-33 secretion in human bronchial epithelial cells. Our findings showed that AR signaling stabilized Treg suppressive function, providing a mechanism for the sex difference in asthma.


Assuntos
Asma/imunologia , Receptores Androgênicos/imunologia , Transdução de Sinais/imunologia , Linfócitos T Reguladores/imunologia , Animais , Asma/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Receptores Androgênicos/genética , Transdução de Sinais/genética
5.
Eur Respir Rev ; 30(162)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-34789462

RESUMO

Asthma is a heterogenous disease, and its prevalence and severity are different in males versus females through various ages. As children, boys have an increased prevalence of asthma. As adults, women have an increased prevalence and severity of asthma. Sex hormones, genetic and epigenetic variations, social and environmental factors, and responses to asthma therapeutics are important factors in the sex differences observed in asthma incidence, prevalence and severity. For women, fluctuations in sex hormone levels during puberty, the menstrual cycle and pregnancy are associated with asthma pathogenesis. Further, sex differences in gene expression and epigenetic modifications and responses to environmental factors, including SARS-CoV-2 infections, are associated with differences in asthma incidence, prevalence and symptoms. We review the role of sex hormones, genetics and epigenetics, and their interactions with the environment in the clinical manifestations and therapeutic response of asthma.


Assuntos
Asma , COVID-19 , Adulto , Asma/diagnóstico , Asma/tratamento farmacológico , Asma/epidemiologia , Criança , Feminino , Hormônios Esteroides Gonadais , Humanos , Masculino , Gravidez , Prevalência , SARS-CoV-2 , Fatores Sexuais
6.
J Clin Invest ; 131(7)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33529171

RESUMO

Tregs restrain both the innate and adaptive immune systems to maintain homeostasis. Allergic airway inflammation, characterized by a Th2 response that results from a breakdown of tolerance to innocuous environmental antigens, is negatively regulated by Tregs. We previously reported that prostaglandin I2 (PGI2) promoted immune tolerance in models of allergic inflammation; however, the effect of PGI2 on Treg function was not investigated. Tregs from mice deficient in the PGI2 receptor IP (IP KO) had impaired suppressive capabilities during allergic airway inflammatory responses compared with mice in which PGI2 signaling was intact. IP KO Tregs had significantly enhanced expression of immunoglobulin-like transcript 3 (ILT3) compared with WT Tregs, which may contribute to the impairment of the IP KO Treg's ability to suppress Th2 responses. Using fate-mapping mice, we reported that PGI2 signaling prevents Treg reprogramming toward a pathogenic phenotype. PGI2 analogs promoted the differentiation of naive T cells to Tregs in both mice and humans via repression of ß-catenin signaling. Finally, a missense variant in IP in humans was strongly associated with chronic obstructive asthma. Together, these data support that PGI2 signaling licenses Treg suppressive function and that PGI2 is a therapeutic target for enhancing Treg function.


Assuntos
Asma/imunologia , Reprogramação Celular/imunologia , Epoprostenol/imunologia , Tolerância Imunológica , Transdução de Sinais/imunologia , Linfócitos T Reguladores/imunologia , Animais , Asma/genética , Asma/patologia , Reprogramação Celular/genética , Doença Crônica , Epoprostenol/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Receptores de Epoprostenol/genética , Receptores de Epoprostenol/imunologia , Transdução de Sinais/genética , Linfócitos T Reguladores/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA