Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Arch Insect Biochem Physiol ; 106(3): e21771, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33644898

RESUMO

Antimicrobial proteins (AMPs) are small, cationic proteins that exhibit activity against bacteria, viruses, parasites, fungi as well as boost host-specific innate immune responses. Insects produce these AMPs in the fat body and hemocytes, and release them into the hemolymph upon microbial infection. Hemolymph was collected from the bacterially immunized fifth instar larvae of tasar silkworm, Antheraea mylitta, and an AMP was purified by organic solvent extraction followed by size exclusion and reverse-phase high-pressure liquid chromatography. The purity of AMP was confirmed by thin-layer chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. The molecular mass was determined by matrix-assisted laser desorption ionization-time of flight mass spectrometry as 14 kDa, and hence designated as AmAMP14. Peptide mass fingerprinting of trypsin-digested AmAMP14 followed by de novo sequencing of one peptide fragment by tandem mass spectrometry analysis revealed the amino acid sequences as CTSPKQCLPPCK. No homology was found in the database search and indicates it as a novel AMP. The minimum inhibitory concentration of the purified AmAMP14 was determined against Escherichia coli, Staphylococcus aureus, and Candida albicans as 30, 60, and 30 µg/ml, respectively. Electron microscopic examination of the AmAMP14-treated cells revealed membrane damage and release of cytoplasmic contents. All these results suggest the production of a novel 14 kDa AMP in the hemolymph of A. mylitta to provide defense against microbial infection.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Hemolinfa/metabolismo , Proteínas de Insetos/isolamento & purificação , Mariposas/metabolismo , Animais , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Peptídeos Catiônicos Antimicrobianos/farmacologia , Candida albicans/efeitos dos fármacos , Cromatografia em Gel/métodos , Cromatografia Líquida de Alta Pressão/métodos , Escherichia coli/efeitos dos fármacos , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Proteínas de Insetos/farmacologia , Larva/metabolismo , Extração Líquido-Líquido/métodos , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos
2.
Biochem Biophys Res Commun ; 527(2): 411-417, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32334835

RESUMO

Antheraea mylitta, a tropical non-mulberry silkworm, is cultivated for tasar silk production in India. Several defense molecules including few antimicrobial peptides (AMPs) and proteins have been identified from this insect. Here, we have isolated and purified an antimicrobial tri-peptide by sequential chromatographic separation procedures. The amino acid sequence of the peptide was determined as NH2-Gln-Ala-Lys-COOH (QAK) using MALDI MS/MS fragmentation analysis. Further, the peptide was synthesized in vitro following solid phase chemistry of peptide synthesis and acetylated by acetic anhydride reaction. Antimicrobial activities of non-acetylated and acetylated QAK were tested against both Escherichia coli and Staphylococcus aureus bacteria. Acetylated peptide inhibited bacterial growth more effectively and its minimum inhibitory concentration (MICs) was found lower than non-acetylated peptide. SEM studies revealed more membrane damage and release of intracellular materials like ß-galactosidase enzyme from acetylated peptide treated bacteria in comparison to non-acetylated QAK. At MIC, acetylated peptide did not show any significant hemolytic activity against rabbit erythrocytes. The results suggest that acetylated-QAK is a promising new antimicrobial peptide and can be used for therapeutic purpose.


Assuntos
Antibacterianos/química , Hemolinfa/química , Proteínas de Insetos/química , Mariposas/química , Proteínas Citotóxicas Formadoras de Poros/química , Animais , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Humanos , Proteínas de Insetos/farmacologia , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos
3.
J Biol Inorg Chem ; 20(5): 791-803, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25944503

RESUMO

A unique protein, bioremediase (UniProt Knowledgebase Accession No.: P86277), isolated from a hot spring bacterium BKH1 (GenBank Accession No.: FJ177512), has shown to exhibit silica leaching activity when incorporated to prepare bio-concrete material. Matrix-assisted laser desorption ionization mass spectrometry analysis suggests that bioremediase is 78% homologous to bovine carbonic anhydrase II though it does not exhibit carbonic anhydrase-like activity. Bioinformatics study is performed for understanding the various physical and chemical parameters of the protein which predicts the involvement of zinc encircled by three histidine residues (His94, His96 and His119) at the active site of the protein. Isothermal titration calorimetric-based thermodynamic study on diethyl pyrocarbonate-modified protein recognizes the presence of Zn(2+) in the enzyme moiety. Exothermic to endothermic transition as observed during titration of the protein with Zn(2+) discloses that there are at least two binding sites for zinc within the protein moiety. Addition of Zn(2+) regains the activity of EDTA chelated bioremediase confirming the presence of extra binding site of Zn(2+) in the protein moiety. Revival of folding pattern of completely unfolded urea-treated protein by Zn(2+) explains the participatory role of zinc in structural stability of the protein. Restoration of the λ max in intrinsic fluorescence emission study of the urea-treated protein by Zn(2+) similarly confirms the involvement of Zn in the refolding of the protein. The utility of bioremediase for silica nanoparticles preparation is observed by field emission scanning electron microscopy.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/metabolismo , Enzimas/metabolismo , Fontes Termais/microbiologia , Temperatura Alta , Dióxido de Silício/metabolismo , Zinco/metabolismo , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Sítios de Ligação , Bovinos , Biologia Computacional , Estabilidade Enzimática , Enzimas/química , Enzimas/isolamento & purificação , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Nanopartículas/química , Nanopartículas/metabolismo , Dióxido de Silício/química , Zinco/química
4.
J Biomol Struct Dyn ; 41(23): 14152-14163, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37021470

RESUMO

The coronavirus disease 2019 (COVID-19) rapidly spread across the globe, infecting millions and causing hundreds of deaths. It has been now around three years but still, it remained a serious threat worldwide, even after the availability of some vaccines. Bio-surfactants are known to have antiviral activities and might be a potential alternative for the treatment of SARS-CoV-2 infection. In the present study, we have isolated and purified, a surfactin-like lipopeptide produced by a probiotic bacterial strain Bacillus clausii TS. Upon purification and characterization with MALDI analysis, the molecular weight of the lipopeptide is confirmed as 1037 Da (similar to surfactin C) which is known to have antiviral activities against various enveloped viruses. Purified surfactin-like lipopeptide showed efficient binding and inhibition of SARS-CoV-2 spike (S1) protein, revealed by competitive ELISA assay. Further, we have explored the complete thermodynamics of the inhibitory binding of surfactin-like lipopeptide with S1 protein using isothermal titration calorimetric (ITC) assay. ITC results are in agreement with ELISA with a binding constant of 1.78 × 10-4 M-1. For further validation of the inhibitory binding of surfactin-like lipopeptide with S1 protein and its receptor binding domain (RBD), we performed molecular docking, dynamics, and simulation experiments. Our results suggested that surfactin could be a promising drug agent for the spike protein targeting drug development strategy against SARS-CoV-2 and other emerging variants.Communicated by Ramaswamy H. Sarma.


Assuntos
Bacillus clausii , COVID-19 , Humanos , SARS-CoV-2/metabolismo , Bacillus clausii/metabolismo , Simulação de Acoplamento Molecular , Glicoproteína da Espícula de Coronavírus/química , Antivirais/farmacologia , Antivirais/química , Glicoproteínas/metabolismo , Lipopeptídeos/farmacologia , Lipopeptídeos/química , Lipopeptídeos/metabolismo , Ligação Proteica , Simulação de Dinâmica Molecular
5.
Curr Protein Pept Sci ; 23(1): 33-43, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35086446

RESUMO

BACKGROUND: COVID-19 is a global threat as a result of the incessant spread of SARS-CoV- 2, necessitating the rapid availability of effective antiviral medications to protect our society. For SARSCoV- 2, a group of peptides has already been indicated, although their effectiveness has yet to be shown. SARS-CoV-2 is an enveloped virus with hydrophobic fusion protein and spike glycoproteins. METHODS: Here, we have compiled a list of amphiphilic peptides that have been published, as well as their in-silico docking studies with the SARS-CoV-2 spike glycoprotein. RESULTS: The findings demonstrated that spike protein and amphiphilic peptides with increased binding affinity create a complex. It was also observed that PalL1 (ARLPRTMVHPKPAQP), 10AN1 (FWFTLIKTQAKQPARYRRFC), THETA defensin (RCICGRGICRLL), and mucroporin M1 (LFRLIKSLIKRLVSAFK) showed the binding free energy of more than -1000 kcal/mol. Molecular pI and hydrophobicity are also important factors of peptides to enhance the binding affinity with spike protein of SARS-CoV-2. CONCLUSION: In light of these findings, it is crucial to compare the in-vitro to in-vivo efficacy of amphiphilic peptides in order to produce an efficient anti-SARS-CoV-2 peptide therapy that might assist control the present pandemic scenario.


Assuntos
Tratamento Farmacológico da COVID-19 , Glicoproteína da Espícula de Coronavírus , Antivirais/química , Antivirais/farmacologia , Antivirais/uso terapêutico , Humanos , Micelas , Simulação de Acoplamento Molecular , Peptídeos/metabolismo , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo
6.
Infect Disord Drug Targets ; 21(4): 608-618, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32718300

RESUMO

BACKGROUND: COVID-19 is a life-threatening novel corona viral infection to our civilization and spreading rapidly. Tremendousefforts have been made by the researchers to search for a drug to control SARS-CoV-2. METHODS: Here, a series of arsenical derivatives were optimized and analyzed with in silico study to search the inhibitor of RNA dependent RNA polymerase (RdRp), the major replication factor of SARS-CoV-2. All the optimized derivatives were blindly docked with RdRp of SARS-CoV-2 using iGEMDOCK v2.1. RESULTS: Based on the lower idock score in the catalytic pocket of RdRp, darinaparsin (-82.52 kcal/- mol) was revealed to be the most effective among them. Darinaparsin strongly binds with both Nsp9 replicase protein (-8.77 kcal/mol) and Nsp15 endoribonuclease (-8.3 kcal/mol) of SARS-- CoV-2 as confirmed from the AutoDock analysis. During infection, the ssRNA of SARS-CoV-2 is translated into large polyproteins forming viral replication complex by specific proteases like 3CL protease and papain protease. This is also another target to control the virus infection where darinaparsin also performs the inhibitory role to proteases of 3CL protease (-7.69 kcal/mol) and papain protease (-8.43 kcal/mol). CONCLUSION: In the host cell, the furin protease serves as a gateway to the viral entry and darinaparsin docked with furin protease, which revealed a strong binding affinity. Thus, screening of potential arsenic drugs would help in providing the fast in-vitro to in-vivo analysis towards the development of therapeutics against SARS-CoV-2.


Assuntos
Antivirais/farmacologia , Arsenicais , Glutationa , SARS-CoV-2/efeitos dos fármacos , Arsenicais/farmacologia , COVID-19 , Simulação por Computador , Glutationa/análogos & derivados , Glutationa/farmacologia , Humanos , Simulação de Acoplamento Molecular , Peptídeo Hidrolases , Inibidores de Proteases/farmacologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores
7.
Int J Antimicrob Agents ; 57(1): 106218, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33166692

RESUMO

INTRODUCTION: The recent pandemic outbreak of SARS-CoV-2 has been associated with a lethal atypical pneumonia, making COVID-19 an urgent public health issue with an increasing rate of mortality and morbidity. There are currently no vaccines or therapeutics available for COVID-19, which is causing an urgent search for a new drug to combat the COVID-19 pandemic. The lipid membrane alternation efficiency of small antimicrobial lipopeptides enables them to block viral membrane fusion to the host cell. Lipopeptides could serve as potential antiviral agents, by interacting or competing with viral fusion proteins. METHODS: This study screened seven different lipopeptides (tsushimycin, daptomycin, surfactin, bacillomycin, iturin, srfTE, and LPD-12) and docked them individually against the spike (S)-glycoprotein of SARS-CoV-2. RESULTS: Based on the maximum docked score and minimum atomic contact energy, LPD-12 (-1137.38 kcal) was the appropriate molecule for proper binding with the S-glycoprotein of SARS-CoV-2 and thus significantly interrupted its affinity of binding with angiotensin-converting enzyme-2 (ACE2), which is the only receptor molecule found to be facilitating disease development. The results confirmed a strong binding affinity of LPD-12 with ACE2, with a binding free energy of -1621.62 kcal, which could also reciprocally prevent the binding of S-protein. CONCLUSTION: It can be concluded that LPD-12 may act as a potential therapeutic drug, by reducing the entry of SARS-CoV-2 to the human cells via the ACE2 receptor and related infections.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Antivirais/metabolismo , Lipopeptídeos/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2/química , Antivirais/química , Antivirais/farmacologia , Avaliação Pré-Clínica de Medicamentos , Lipopeptídeos/farmacologia , Simulação de Acoplamento Molecular , Peptídeos Cíclicos/química , Peptídeos Cíclicos/metabolismo , Glicoproteína da Espícula de Coronavírus/química
8.
Probiotics Antimicrob Proteins ; 13(3): 611-623, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33226581

RESUMO

As of recent, the pandemic episode of COVID-19, a severe acute respiratory syndrome brought about by a novel coronavirus (SARS-CoV-2) expanding the pace of mortality, has affected the disease rate profoundly. Invulnerability is the fundamental choice to prevent the ruining event of COVID-19, as the drugs and antibodies are in the phase of preliminary clinical trials. Within this brief period, a few strains of SARS-CoV-2 have been recognized by the vaccine manufacturers, which could be an incorrect guess about the strain that will end up spreading. Since the circulating SARS-CoV-2 strains continue to mutate, immunizations, if at all works, might be for a restricted time. We have not put sufficient time in research to understand the immune responses that correlate with protection as this could help refine vaccines. Here, we have summed up the adequacy of the immunomodulatory component of probiotics for the prevention against viral infections. Furthermore, an in silico data have been provided in support of the "probiotics-derived lipopeptides" role in inactivating spike (S) glycoprotein of SARS-CoV-2 and its host receptor molecule, ACE2. Among well characterized lipopeptides derived from different probiotic strains, subtilisin (Bacillus amyloliquefaciens), curvacin A (Lactobacillus curvatus), sakacin P (Lactobacillus sakei), lactococcin Gb (Lactococcus lactis) was utilized in this study to demonstrate a higher binding proclivity to S-protein of SARS-CoV-2 and human ACE2. The outcome revealed noteworthy capabilities of the lipopeptides, due to their amphiphilic nature, to bind spike protein and receptor molecule, which may act to competitively inhibit the mandatory interaction of SARS-CoV-2 with the host epithelial cell expressing ACE2 for its entry into the cell for reproduction. In the current situation, probiotic treatment alongside chemotherapy may assist in bringing about substantial improvement of the health of COVID-19 patients. At the same time, probiotics may aid towards building up the immune defenses in people to evade COVID-19.


Assuntos
COVID-19/prevenção & controle , Fatores Imunológicos/uso terapêutico , Peptídeos/uso terapêutico , Probióticos/uso terapêutico , SARS-CoV-2/metabolismo , COVID-19/epidemiologia , COVID-19/metabolismo , Humanos
9.
Colloids Surf B Biointerfaces ; 188: 110822, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32006908

RESUMO

Investigating the role of molecular size and interfacial potential dependent antimicrobial propensity of nanoparticles (NPs) against bacteria is the important goal for secure usage of NPs to any living systems. In this study, crude silk sericin protein of Antheraea mylitta cocoon was fractionated into three different molecular size-ranges fractions such as fraction-1 (50-300 kDa), fraction-2 (30-50 kDa) and fraction-3 (10-30 kDa), and used to prepare crude sericin nanoparticles (CRSNPs), as well as fraction specific negative surface potential nanoparticles : n-SNP1, n-SNP2 and n-SNP3, respectively. SNPs were coated with poly-l-lysine to make the surface potential positive (p-SNPs) and confirmed through UV-vis spectroscopy, FTIR, zeta sizer and zeta potential measurement. The shape and sizes of all SNPs were determined by electron microscopy and found spherical in shape having diameter ranging from 110-165 nm (CRSNPs), 66-85 nm (SNP1), 33-49 nm (SNP2) and 14-24 nm (SNP3) for n-SNPs and p-SNPs, respectively. Evaluation of antibacterial activity using different concentrations (50, 100, 200 µg/mL) of all these SNPs showed significantly more activity of p-SNPs than n-SNPs against Staphylococcus aureus and Escherichia coli. Among these, SNP2 showed the strongest antibacterial activity followed by SNP3, SNP1 and CRSNPs. Relatively higher amounts of reactive oxygen species (ROS) generation were observed after treatment of bacteria with p-SNP2 (50 µg/mL) which is non-toxic to human cells. FE-SEM analysis showed more disruption of bacterial cell membrane after treatment with p-SNPs than n-SNPs. All these data suggested that molecular size and interfacial potential of SNPs enhance ROS generation to exert their antibacterial activity.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Nanopartículas/química , Polilisina/farmacologia , Sericinas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Polilisina/química , Sericinas/química , Propriedades de Superfície
10.
Curr Protein Pept Sci ; 21(10): 938-947, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32901582

RESUMO

Infectious diseases caused by viruses have become a serious public health issue in the recent past, including the current pandemic situation of COVID-19. Enveloped viruses are most commonly known to cause emerging and recurring infectious diseases. Viral and cell membrane fusion is the major key event in the case of enveloped viruses that is required for their entry into the cell. Viral fusion proteins play an important role in the fusion process and in infection establishment. Because of this, the fusion process targeting antivirals become an interest to fight against viral diseases caused by the enveloped virus. Lower respiratory tract infections casing viruses like influenza, respiratory syncytial virus (RSV), and severe acute respiratory syndrome coronavirus (SARS-CoV) are examples of such enveloped viruses that are at the top in public health issues. Here, we summarized the viral fusion protein targeted antiviral peptides along with their mechanism and specific design to combat the viral fusion process. The pandemic COVID-19, severe respiratory syndrome disease is an outbreak worldwide. There are no definitive drugs yet, but few are in on-going trials. Here, an approach of fragmentbased drug design (FBDD) methodology is used to identify the broad spectrum agent target to the conserved region of fusion protein of SARS CoV-2. Three dipeptides (DL, LQ and ID) were chosen from the library and designed by the systematic combination along with their possible modifications of amino acids to the target sites. Designed peptides were docked with targeted fusion protein after energy minimization. Results show strong and significant binding affinity (DL = -60.1 kcal/mol; LQ = - 62.8 kcal/mol; ID= -71.5 kcal/mol) during interaction. Anyone of the active peptides from the developed libraries may help to block the target sites competitively to successfully control COVID-19.


Assuntos
Antivirais/farmacologia , Dipeptídeos/farmacologia , Desenho de Fármacos , Fusão de Membrana/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Antivirais/química , Antivirais/metabolismo , Dipeptídeos/química , Dipeptídeos/metabolismo , Terapia de Alvo Molecular , SARS-CoV-2/metabolismo
11.
Transl Med Commun ; 5(1): 21, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33169107

RESUMO

Since the birth of Christ, in these 2019 years, the man on earth has never experienced a survival challenge from any acellular protist compared to SARS-CoV-2. No specific drugs yet been approved. The host immunity is the only alternative to prevent and or reduce the infection and mortality rate as well. Here, a novel mechanism of melanin mediated host immunity is proposed having potent biotechnological prospects in health care management of COVID-19. Vitamin D is known to enhance the rate of melanin synthesis; and this may concurrently regulate the expression of furin expression. In silico analyses have revealed that the intermediates of melanin are capable of binding strongly with the active site of furin protease. On the other hand, furin expression is negatively regulated via 1-α-hydroxylase (CYP27B1), that belongs to vitamin-D pathway and controls cellular calcium levels. Here, we have envisaged the availability of biological melanin and elucidated the bio-medical potential. Thus, we propose a possible synergistic application of melanin and the enzyme CYP27B1 (regulates vitamin D biosynthesis) as a novel strategy to prevent viral entry through the inactivation of furin protease and aid in boosting our immunity at the cellular and humoral levels.

12.
Genom Data ; 12: 122-129, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28507897

RESUMO

Various aspects of hot springs at Bakreshwar (Lat. 23°52'48″N; Long. 87°22'40″E) in West Bengal, India have been investigated since the middle of 20th century, but comprehending the complete diversity and the complexity of the microbial population therein has been in the continuing process. Some of these microorganisms are found to have immense industrial importance. Microbes generally exist in milieus of varying complexities and diversities. Attempting the usually employed cultivation-based techniques in experimentation with those microbes had confronted various limitations. To overcome these limitations a strategy based on high-throughput sequencing of 16S rRNA gene amplicon analysis was employed for studying the differential diversity and the detailed nature of microbial population of the two hot springs of Bakreshwar (54 °C & 65 °C). Paired-end libraries of amplified V-3 hyper-variable 16S rDNA fragments from sets of samples that varied in their contents, ranging from a single bacterium to highly complex communities were sequenced. The comparison revealed the differential aspects in the two hot spring waters; the samples at 54 °C showed the bacterial phylum Firmicutes (65.85%) and Synergistetes (27.24%) predominating and those from hot spring water at 65 °C showed the abundance of the phyla Firmicutes (96.10%) and Proteobacteria (3.36%). The presence of Archaea in the hot springs could not be ascertained.

13.
Colloids Surf B Biointerfaces ; 126: 245-50, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25576815

RESUMO

A green technique of silica nanoparticles (SiO2-NPs) formation by using a thermophilic bacterium (BKH1) as biological template is demonstrated here. SiO2-NPs are synthesized from inorganic (magnesium tri-silicate), and organic (tetraethyl orthosilicate) precursor with the help of BKH1 bacteria. BKH1 derived SiO2-NPs are subjected to Atomic Force Microscopy, Transmission Electron Microscopy, and Field Emission Scanning Electron Microscopy equipped with Energy Dispersive X-ray Analyzer to establish nanoparticle morphology. In addition, Infrared Spectroscopy reveals the presence of chemical and functional groups in SiO2-NPs samples and X-ray diffraction, the amorphous nature. The Zeta potential (ζ) reveals substantial stability of bacteria derived SiO2-NPs in the aqueous environment. Presence of two intense luminescence peaks in the UV and visible regions merits the bacteria derived SiO2-NPs for use as an optical probe in biomedical applications. This novel mode of bacteria derived SiO2-NPs formation is eco-friendly and ambient temperature synthesis approach. It avoids the complex protocol of multi-steps synthesis of silica nanoparticles, hence likely to be cost-effective. In-depth translation research is suggested for the synthesis of silica nanoparticles in large quantities using thermophilic BKH1 template.


Assuntos
Bactérias/química , Biotecnologia , Química Verde , Nanopartículas/química , Dióxido de Silício/química , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA