Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Opt ; 60(7): 1958-1965, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33690287

RESUMO

With the availability of high-power (milliwatts) single-mode tunable laser sources that operate at room temperature across the infrared (IR) region, tunable laser spectrometers have seen an explosion of growth in applications that include commercial, Earth and planetary science, and medical and industrial sensing. While the laser sources themselves have shown steady improvement, the detection architecture of using a single-element detector at one end of a multipass cell has remained unchanged over the last few decades. We present here an innovative new approach using a detector array coupled to an IR-transmissive mirror to image all or part of the multipass spot pattern of the far mirror and record spectra for each pixel. This novel approach offers improved sensitivity, increased dynamic range, laser power normalization, contaminant subtraction, resilience to misalignment, and reduces the instrument power requirement by avoiding the need for "fringe-wash" heaters. With many tens of pixels representing each spot during the laser spectral scan, intensity and optical fringe amplitude and phase information are recorded. This allows selection and manipulation (e.g., co-addition, subtraction) of the pixel output spectra to minimize optical interference fringes thereby increasing sensitivity. We demonstrate a factor of ∼20 sensitivity improvement over traditional single-element detection. Dynamic range increase of a factor of ∼100 is also demonstrated through spot selection representing different pathlengths. Additionally, subtracting the spectrum of the first spot from that of the higher pass normalizes the laser power and removes the contribution of contaminant gas and fringes in the fore-optics region. These initial results show that this imaging method is particularly advantageous for multi-channel laser spectrometers, and, once the image field is analyzed, pixel selection can be used to minimize data rate and volume collection requirements. This technique could be beneficial to enhanced-cavity detection schemes.

2.
J Breath Res ; 16(3)2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35623323

RESUMO

Tunable laser spectroscopy (TLS) near 2683 nm was used to measure carbon dioxide and water vapor inside a pilot mask during jet fighter flights. Measurement frequency was 100 Hz in order to capture breathing profiles and other gas flow dynamics. Analysis of the full inhalation and exhalation breathing cycle allowed precise monitoring of breathing performance and interaction of the pilot with the life-support system. Measurements revealed dynamic phenomena pertaining to mechanical gas flow and pilot respiration that may be used to understand gas delivery stresses imposed upon the pilot and pilot physiology during flight. Typically, such measurements are made with non-dispersive infrared instrumentation for only carbon dioxide with intrinsic challenges regarding time and optical resolution. The TLS approach is a major advance because the sensor is placed directly into the mask improving its time response and enabling use of water vapor measurements that are less impacted from memory effects. This article presents the implementation of TLS and shows highly time-resolved pilot breathing data for high-performance aircraft tests.


Assuntos
Capnografia , Dióxido de Carbono , Testes Respiratórios , Capnografia/métodos , Humanos , Lasers , Respiração , Análise Espectral , Vapor
3.
Appl Opt ; 50(14): 2098-111, 2011 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-21556111

RESUMO

We report airborne measurements of CO(2) column abundance conducted during two 2009 campaigns using a 2.05 µm laser absorption spectrometer. The two flight campaigns took place in the California Mojave desert and in Oklahoma. The integrated path differential absorption (IPDA) method is used for the CO(2) column mixing ratio retrievals. This instrument and the data analysis methodology provide insight into the capabilities of the IPDA method for both airborne measurements and future global-scale CO(2) measurements from low Earth orbit pertinent to the NASA Active Sensing of CO(2) Emissions over Nights, Days, and Seasons mission. The use of a favorable absorption line in the CO(2) 2 µm band allows the on-line frequency to be displaced two (surface pressure) half-widths from line center, providing high sensitivity to the lower tropospheric CO(2). The measurement repeatability and measurement precision are in good agreement with predicted estimates. We also report comparisons with airborne in situ measurements conducted during the Oklahoma campaign.

4.
J Breath Res ; 15(4)2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34525465

RESUMO

Real-time monitoring of exhaled carbon dioxide (CO2), also known as capnography, is a valuable hospital tool for assessing patient health during anesthesia and in both the emergency department and critical care units. The fundamental measurement is referred to as end-tidal carbon dioxide concentration that reflects pulmonary gas exchange of CO2representing systemic metabolism. The shape of the exhaled CO2concentration for individual inhalation/exhalation breath cycles can offer additional information regarding lung function, airway obstruction, alveolar ventilation, and worsening disease. The most frequent use is to indicate appropriate placement of an endotracheal tube but and it is also employed in the assessment of disease severity and response to treatment (e.g. asthma). Other applications include outpatient monitoring with oxygen supplementation (nasal cannula) and continuous positive airway pressure control for sleep apnea. As technology has evolved, CO2measurements have become more mobile; capnography systems are now used by emergency medical services personnel for verifying proper placement of airway devices in 'pre-hospital' environments. The use of CO2diagnostics has evolved to identify breathing system disruptions in 'on-demand' regulator/masks equipment, both in medical and occupational settings. Most recently, miniaturized tunable laser spectroscopy sensors have been implemented for assessing pilot breathing in high-performance military aircraft. This editorial describes the use of CO2breath sensors and proposes some new applications based on miniaturized sensors that can be directly inserted into breathing masks.


Assuntos
Capnografia , Dióxido de Carbono , Testes Respiratórios , Humanos , Lasers , Monitorização Fisiológica , Análise Espectral , Tecnologia
5.
Astrobiology ; 20(3): 307-326, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32125196

RESUMO

The molecules feeding life's emergence are thought to have been provided through the hydrothermal interactions of convecting carbonic ocean waters with minerals comprising the early Hadean oceanic crust. Few laboratory experiments have simulated ancient hydrothermal conditions to test this conjecture. We used the JPL hydrothermal flow reactor to investigate CO2 reduction in simulated ancient alkaline convective systems over 3 days (T = 120°C, P = 100 bar, pH = 11). H2-rich hydrothermal simulant and CO2-rich ocean simulant solutions were periodically driven in 4-h cycles through synthetic mafic and ultramafic substrates and Fe>Ni sulfides. The resulting reductants included micromoles of HS- and formate accompanied possibly by micromoles of acetate and intermittent minor bursts of methane as ascertained by isotopic labeling. The formate concentrations directly correlated with the CO2 input as well as with millimoles of Mg2+ ions, whereas the acetate did not. Also, tens of micromoles of methane were drawn continuously from the reactor materials during what appeared to be the onset of serpentinization. These results support the hypothesis that formate may have been delivered directly to a branch of an emerging acetyl coenzyme-A pathway, thus obviating the need for the very first hydrogenation of CO2 to be made in a hydrothermal mound. Another feed to early metabolism could have been methane, likely mostly leached from primary CH4 present in the original Hadean crust or emanating from the mantle. That a small volume of methane was produced sporadically from the 13CO2-feed, perhaps from transient occlusions, echoes the mixed results and interpretations from other laboratories. As serpentinization and hydrothermal leaching can occur wherever an ocean convects within anhydrous olivine- and sulfide-rich crust, these results may be generalized to other wet rocky planets and moons in our solar system and beyond.


Assuntos
Fontes Hidrotermais/química , Compostos de Ferro/metabolismo , Compostos de Magnésio/metabolismo , Origem da Vida , Água do Mar/química , Silicatos/metabolismo , Acetilcoenzima A/metabolismo , Dióxido de Carbono/química , Planeta Terra , Hidrogênio/química , Compostos de Ferro/química , Compostos de Magnésio/química , Metano/química , Oceanos e Mares , Silicatos/química
6.
Science ; 360(6393): 1093-1096, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29880682

RESUMO

Variable levels of methane in the martian atmosphere have eluded explanation partly because the measurements are not repeatable in time or location. We report in situ measurements at Gale crater made over a 5-year period by the Tunable Laser Spectrometer on the Curiosity rover. The background levels of methane have a mean value 0.41 ± 0.16 parts per billion by volume (ppbv) (95% confidence interval) and exhibit a strong, repeatable seasonal variation (0.24 to 0.65 ppbv). This variation is greater than that predicted from either ultraviolet degradation of impact-delivered organics on the surface or from the annual surface pressure cycle. The large seasonal variation in the background and occurrences of higher temporary spikes (~7 ppbv) are consistent with small localized sources of methane released from martian surface or subsurface reservoirs.

7.
Science ; 347(6220): 415-7, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25515120

RESUMO

Reports of plumes or patches of methane in the martian atmosphere that vary over monthly time scales have defied explanation to date. From in situ measurements made over a 20-month period by the tunable laser spectrometer of the Sample Analysis at Mars instrument suite on Curiosity at Gale crater, we report detection of background levels of atmospheric methane of mean value 0.69 ± 0.25 parts per billion by volume (ppbv) at the 95% confidence interval (CI). This abundance is lower than model estimates of ultraviolet degradation of accreted interplanetary dust particles or carbonaceous chondrite material. Additionally, in four sequential measurements spanning a 60-sol period (where 1 sol is a martian day), we observed elevated levels of methane of 7.2 ± 2.1 ppbv (95% CI), implying that Mars is episodically producing methane from an additional unknown source.

8.
Science ; 341(6143): 260-3, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23869013

RESUMO

Stable isotope ratios of H, C, and O are powerful indicators of a wide variety of planetary geophysical processes, and for Mars they reveal the record of loss of its atmosphere and subsequent interactions with its surface such as carbonate formation. We report in situ measurements of the isotopic ratios of D/H and (18)O/(16)O in water and (13)C/(12)C, (18)O/(16)O, (17)O/(16)O, and (13)C(18)O/(12)C(16)O in carbon dioxide, made in the martian atmosphere at Gale Crater from the Curiosity rover using the Sample Analysis at Mars (SAM)'s tunable laser spectrometer (TLS). Comparison between our measurements in the modern atmosphere and those of martian meteorites such as ALH 84001 implies that the martian reservoirs of CO2 and H2O were largely established ~4 billion years ago, but that atmospheric loss or surface interaction may be still ongoing.

9.
Appl Opt ; 46(7): 1132-8, 2007 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-17304312

RESUMO

Aircraft and balloon in situ measurements of CH4 and HCl using cw distributed feedback (DFB) interband cascade (IC) lasers are reported. In the stratosphere and upper troposphere, sensitivity toward CH4 and HCl is better than 10 ppbv (1 s) and 90 pptv (50 s), respectively. These are the first flight measurements of trace gas-phase species using cw DFB IC lasers.

10.
Anal Chem ; 79(24): 9261-8, 2007 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18020312

RESUMO

Sulfur isotope measurements offer comprehensive information on the origin and history of natural materials. Tunable laser spectroscopy is a powerful analytical technique for isotope analysis that has proven itself readily adaptable for in situ terrestrial and planetary measurements. Measurements of delta(34)S in SO2 were made using tunable laser spectroscopy of combusted gas samples from six sulfur-bearing solids with delta(34)S ranging from -34 to +22 per thousand (also measured with mass spectrometry). Standard deviation between laser and mass spectrometer measurements was 3.7 per thousand for sample sizes of 200 +/- 75 nmol SO(2). Although SO(2)(g) decreased 9% over 15 min upon entrainment in the analysis cell from wall uptake, observed fractionation was insignificant (+0.2 +/- 0.6 per thousand). We also describe a strong, distinct (33)SO(2) rovibrational transition in the same spectral region, which may enable simultaneous delta(34)S and Delta(33)S measurements.


Assuntos
Análise Espectral/métodos , Isótopos de Enxofre/análise , Lasers , Reprodutibilidade dos Testes , Dióxido de Enxofre/química
11.
J Phys Chem A ; 110(21): 6948-59, 2006 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-16722709

RESUMO

Near-infrared spectroscopy was used to monitor HO2 formed by pulsed laser photolysis of Cl2-O2-CH3OH-N2 mixtures. On the microsecond time scale, [HO2] exhibited a time dependence consistent with a mechanism in which [HO2] approached equilibrium via HO2 + HO2.CH3OH (3, -3). The equilibrium constant for reaction 3, K(p), was measured between 231 and 261 K at 50 and 100 Torr, leading to standard reaction enthalpy and entropy values (1 sigma) of delta(r) = -37.4 +/- 4.8 kJ mol(-1) and delta(r) = -100 +/- 19 J mol(-1) K(-1). The effective bimolecular rate constant, k3, for formation of the HO2.CH3OH complex is .10(-15).exp[(1800 +/- 500)/T] cm3 molecule(-1) s(-1) at 100 Torr (1 sigma). Ab initio calculations of the optimized structure and energetics of the HO2.CH3OH complex were performed at the CCSD(T)/6-311++G(3df,3pd)//MP2(full)/6-311++G(2df,2pd) level. The complex was found to have a strong hydrogen bond (D(e) = 43.9 kJ mol(-1)) with the hydrogen in HO2 binding to the oxygen in CH3OH. The calculated enthalpy for association is delta(r) = -36.8 kJ mol(-1). The potentials for the torsion about the O2-H bond and for the hydrogen-bond stretch were computed and 1D vibrational levels determined. After explicitly accounting for these degrees of freedom, the calculated Third Law entropy of association is delta(r) = -106 J mol(-1) K(-1). Both the calculated enthalpy and entropy of association are in reasonably good agreement with experiment. When combined with results from our previous study (Christensen et al. Geophys. Res. Lett. 2002, 29; doi:10.1029/2001GL014525), the rate coefficient for the reaction of HO2 with the complex, HO2 + HO2.CH3OH, is determined to be (2.1 +/- 0.7) x 10(-11) cm3 molecule(-1) s(-1). The results of the present work argue for a reinterpretation of the recent measurement of the HO2 self-reaction rate constant by Stone and Rowley (Phys. Chem. Chem. Phys. 2005, 7, 2156). Significant complex concentrations are present at the high methanol concentrations used in that work and lead to a nonlinear methanol dependence of the apparent rate constant. This nonlinearity introduces substantial uncertainty in the extrapolation to zero methanol.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA