Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Bull Atmos Sci Technol ; 5(1): 2, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38586869

RESUMO

Terrestrial gamma-ray flashes (TGFs) are bursts of energetic X- and gamma-rays emitted from thunderstorms. The Atmosphere-Space Interactions Monitor (ASIM) mounted onto the International Space Station (ISS) is dedicated to measure TGFs and optical signatures of lightning; ISS LIS (Lightning Imaging Sensor) detects lightning flashes allowing for simultaneous measurements with ASIM. Whilst ASIM measures ∼300-400 TGFs per year, ISS LIS detects ∼106 annual lightning flashes giving a disproportion of four orders of magnitude. Based on the temporal evolution of lightning flashes and the spatial pattern of the constituing events, we present an algorithm to reduce the number of space-detected flashes potentially associated with TGFs by ∼ 60% and of associated LIS groups by ∼ 95%. We use ASIM measurements to confirm that the resulting flashes are indeed those associated with TGFs detected at approx. 400 km altitude and thus benchmark our algorithm preserving 70-80% of TGFs from concurrent ASIM-LIS measurements. We compare how the radiance, footprint size and the global distribution of lightning flashes of the reduced set relates to the average of all measured lightning flashes and do not observe any significant difference. Finally, we present a parameter study of our algorithm and discuss which parameters can be tweaked to maximize the reduction efficiency whilst keeping flashes associated to TGFs. In the future, this algorithm will hence be capable of facilitating the search for TGFs in a reduced set of lightning flashes measured from space.

2.
Intensive Crit Care Nurs ; 84: 103731, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38823272

RESUMO

BACKGROUND: Emergency Reflex Action Drills (ERADs) are meant to decrease stress-associated cognitive demand in high urgency situations. The aim of this study was to develop and test an ERAD for witnessed traumatic cardiac arrest (TCA), an event in which potentially reversible causes need to be systematically addressed and treated in a short period of time. We hypothesize that this ERAD (the TCA-Drill) helps ground Emergency Medical Services (EMS) nurses in overcoming performance decline during this specific high-pressure situation. METHODS: This was a prospective, experimental one-group pre-post intervention study. Ground EMS nurses participated in a session of four simulated scenarios, with an in-between educational session to teach the TCA-Drill. Scenarios were video recorded, after which adherence and time differences were analyzed. Self-confidence on clinical practice was measured before and after the scenarios. RESULTS: Twelve ground EMS nurses participated in this study. Overall median time to address reversible causes of TCA decreased significantly using the TCA-Drill (132 vs. 110 s; p = 0.030) compared with the conventional ALS strategy. More specifically, participants adhering to the TCA-Drill showed a significantly lower time needed for hemorrhage control (58 vs. 37 s; p = 0.012). Eight of 12 (67 %) ground EMS nurses performed the ERAD without protocol deviations. Reported self-confidence significantly increased on 11 of the 13 surveyed items. CONCLUSIONS: The use of an ERAD for TCA (the TCA-Drill) significantly reduces the time to address reversible causes for TCA without delaying chest compressions in a simulated environment and can be easily taught to ground EMS nurses and increases self-confidence. IMPLICATIONS FOR CLINICAL PRACTICE: The use of an ERAD for TCA (the TCA-Drill can significantly reduce the time to address reversible causes for TCA without delaying chest compression. This drill can be easily taught to ground EMS nurses and increases their self-confidence in addressing TCA-patients.

3.
Nano Lett ; 11(9): 3676-80, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21838252

RESUMO

Bundles of filamentous actin are dominant cytoskeletal structures, which play a crucial role in various cellular processes. As yet quantifying the fundamental interaction between two individual actin filaments forming the smallest possible bundle has not been realized. Applying holographic optical tweezers integrated with a microfluidic platform, we were able to measure the forces between two actin filaments during bundle formation. Quantitative analysis yields forces up to 0.2 pN depending on the concentration of bundling agents.


Assuntos
Actinas/química , Biofísica/métodos , Trifosfato de Adenosina/química , Animais , Citoesqueleto/metabolismo , Eletrólitos , Humanos , Íons , Microfluídica , Nematoides , Pinças Ópticas , Óptica e Fotônica , Reprodutibilidade dos Testes , Estresse Mecânico
4.
Lab Chip ; 9(1): 44-9, 2009 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-19209334

RESUMO

We present a simple microfluidic device that uses an array of well-defined chambers to immobilize thousands of femtoliter- to picoliter-scale aqueous drops suspended in inert carrier oil. This device enables timelapse studies of large numbers of individual drops, while simultaneously enabling subsequent drop recovery.


Assuntos
Microfluídica/métodos , Microfluídica/instrumentação , Saccharomyces cerevisiae/química , Sensibilidade e Especificidade
5.
Science ; 264(5163): 1313-6, 1994 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-17780850

RESUMO

Detectors aboard the Compton Gamma Ray Observatory have observed an unexplained terrestrial phenomenon: brief, intense flashes of gamma rays. These flashes must originate in the atmosphere at altitudes above at least 30 kilometers in order to escape atmospheric absorption and reach the orbiting detectors. At least a dozen such events have been detected over the past 2 years. The photon spectra from the events are very hard (peaking in the high-energy portion of the spectrum) and are consistent with bremsstrahlung emission from energetic (million-electron volt) electrons. The most likely origin of these high-energy electrons, although speculative at this time, is a rare type of high-altitude electrical discharge above thunderstorm regions.

6.
J Geophys Res Atmos ; 124(13): 7236-7254, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31598449

RESUMO

In the spring of 2017 an ER-2 aircraft campaign was undertaken over continental United States to observe energetic radiation from thunderstorms and lightning. The payload consisted of a suite of instruments designed to detect optical signals, electric fields, and gamma rays from lightning. Starting from Georgia, USA, 16 flights were performed, for a total of about 70 flight hours at a cruise altitude of 20 km. Of these, 45 flight hours were over thunderstorm regions. An analysis of two gamma ray glow events that were observed over Colorado at 21:47 UT on 8 May 2017 is presented. We explore the charge structure of the cloud system, as well as possible mechanisms that can produce the gamma ray glows. The thundercloud system we passed during the gamma ray glow observation had strong convection in the core of the cloud system. Electric field measurements combined with radar and radio measurements suggest an inverted charge structure, with an upper negative charge layer and a lower positive charge layer. Based on modeling results, we were not able to unambiguously determine the production mechanism. Possible mechanisms are either an enhancement of cosmic background locally (above or below 20 km) by an electric field below the local threshold or an enhancement of the cosmic background inside the cloud but then with normal polarity and an electric field well above the Relativistic Runaway Electron Avalanche threshold.

7.
J Inorg Biochem ; 102(2): 174-83, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17845819

RESUMO

Complex formation of carnosine (Csn) with Cu(II) is suspected to be of significant biochemical importance and can be detected by NMR via ion-induced paramagnetic relaxation of Csn signals. Here, we present quantification of the sensitivity achieved with localized (1)H NMR spectroscopy at physiological pH and high ligand-to-metal ratios. While characterizing the highly effective relaxation transfer onto a huge Csn pool due to fast ligand exchange, it is demonstrated that a metal-to-ligand ratio of approximately 100 ppm suffices to reduce Csn signals by approximately 50% in vitro, thus making the dipeptide a sensitive probe for such ions. Variation of the donor accessibility reveals that the paramagnetic effect is transferred onto a approximately 1370-fold donor abundance for a given ion concentration. A method is presented to characterize such effective ligand exchange relaxation transfer. These studies focus on the monomer formation since comparison with (1)H NMR data of human calf muscle demonstrates that the dimer complex is insignificant in vivo. Observed line broadening in living tissue yields an upper limit of ca. 195 ppm for the Csn-related copper concentration in human skeletal muscle.


Assuntos
Carnosina/química , Cobre/análise , Sondas Moleculares/química , Músculo Esquelético/química , Cobre/química , Humanos , Espectroscopia de Ressonância Magnética/métodos
8.
Small ; 3(6): 1015-22, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17487896

RESUMO

The cytoskeleton is a complex polymer network that plays an essential role in the functionality of eukaryotic cells. It endows cells with mechanical stability, adaptability, and motility. To identify and understand the mechanisms underlying this large variety of capabilities and to possibly transfer them to engineered networks makes it necessary to have in vitro and in silico model systems of the cytoskeleton. These models must be realistic representatives of the cellular network and at the same time be controllable and reproducible. Here, an approach to design complementary experimental and numerical model systems of the actin cytoskeleton is presented and some of their properties discussed.


Assuntos
Actinas/química , Materiais Biomiméticos/química , Citoesqueleto/química , Modelos Biológicos , Actinas/ultraestrutura , Animais , Reagentes de Ligações Cruzadas , Citoesqueleto/ultraestrutura , Dimetilpolisiloxanos/química , Holografia , Modelos Moleculares , Pinças Ópticas , Polietilenoglicóis/química , Coelhos , Resistência ao Cisalhamento
9.
Opt Express ; 14(15): 6604-12, 2006 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-19516840

RESUMO

We introduce a method to tune the local orbital angular momentum density in an optical vortex beam without changing its topological charge or geometric intensity distribution. We show that adjusting the relative amplitudes a and b of two interfering collinear vortex beams of equal but opposite helicity provides the smooth variation of the orbital angular momentum density in the resultant vortex beam. Despite the azimuthal intensity modulations that arise from the interference, the local orbital angular momentum remains constant on the vortex annulus and scales with the modulation parameter, c = (a-b)/(a+b).

10.
Biointerphases ; 8(1): 32, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24706149

RESUMO

The collective migration of cells is fundamental to epithelial biology. One of the hallmarks of collective behavior in migrating cohesive epithelial cell sheets is the emergence of so called leader cells. These cells exhibit a distinct morphology with a large and highly active lamellipodium. Although it is generally accepted that they play a crucial part in collective migration, the biophysical factors that regulate their formation remain unknown.Here we show that a geometry-based cue like local variation of curvature of the collective's perimeter is capable of triggering leader cell formation and promoting enhanced motility at defined positions. Remarkably, the extent of this effect scales with the magnitude of the curvature.Cytoskeletal tension was found to be important for geometry induced leader cell formation, as cells treated with tension reducing agents appeared less sensitive to local curvature variation. Accordingly, traction force microscopy revealed an increased level of shear stress at highly curved positions even before the cell migration had actually started, indicating the presence of a collective polarization induced by the geometry of the confinement.Together our findings suggest that high curvature leads to locally increased stress accumulation, mediated via cell-substrate interaction as well as via cytoskeleton tension. The stress accumulation in turn enhances the probability of leader cell formation as well as cell motility. This work defines the importance of geometric cue such as local curvature in the collective migration dynamics of epithelial cells and thus shows implications for the biophysical regulation of epithelium during wound healing, embryonic development, and oncogenesis.


Assuntos
Movimento Celular/fisiologia , Citoesqueleto/metabolismo , Animais , Células Cultivadas , Ratos
11.
Lab Chip ; 12(5): 916-22, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22252585

RESUMO

Despite its tremendous high-throughput screening capabilities, widespread applications of droplet-based microfluidics are still limited by the poor availability of appropriate analytical assays. Here we report on a novel sensor method that exploits the osmosis-driven change in droplet size as a quantitative and label-free marker for reactions inside the droplets. We present an analysis of the underlying mechanism and apply the method for monitoring metabolic activity at a single-cell level.


Assuntos
Microfluídica/métodos , Nanocápsulas/química , Células Cultivadas , Cinética , Osmose , Tamanho da Partícula , Coloração e Rotulagem , Tensoativos/química , Leveduras/metabolismo
13.
Opt Lett ; 30(16): 2086-8, 2005 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-16127918

RESUMO

No iterative algorithm is necessary to calculate holograms for most holographic optical trapping patterns. Instead, holograms may be produced by a simple extension of the prisms-and-lenses method. This formulaic approach yields the same diffraction efficiency as iterative algorithms for any asymmetric or symmetric but nonperiodic pattern of points while requiring less calculation time. A slight spatial disordering of periodic patterns significantly reduces intensity variations between the different traps without extra calculation costs. Eliminating laborious hologram calculations should greatly facilitate interactive holographic trapping.


Assuntos
Algoritmos , Holografia/métodos , Interpretação de Imagem Assistida por Computador/métodos , Micromanipulação/métodos , Estimulação Física/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA