Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Inorg Chem ; 61(46): 18524-18535, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36342975

RESUMO

A family of five host-guest assemblies comprising different metal ions inside a cuboid 12-palladium-oxo cage, [MO8Pd12L8]n- (MPd12L8, M = ScIII, CoII, CuII, L = AsO43-; M = CdII, HgII, L = PhAsO32-), was synthesized and structurally characterized in the solid state by single-crystal X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and thermogravimetric analysis, and their solution and gas-phase stability were validated by multinuclear NMR spectroscopy and electrospray-ionization mass spectrometry (ESI-MS). The polyoxopalladates (POPs) ScPd12As8, CoPd12As8, and CuPd12As8 represent the first three examples of the MPd12As8 archetype. The unique cubic ligand field of {MO8} allows for collecting the speciation profiles of the POPs in solution using 45Sc and 113Cd NMR techniques. Detailed magnetic and electron paramagnetic resonance (EPR) studies were performed on CuPd12As8. Catalytic studies on MPd12As8 (M = CuII and CoII) supported on SBA-15 unveiled a guest metal-dependent structure-function relationship, with CuPd12As8 being the more efficient precatalyst for the hydroconversion of o-xylene in a fixed-bed reactor.

2.
Inorg Chem ; 55(13): 6376-83, 2016 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-26881994

RESUMO

Magnetic properties of the series of three linear, trimetallic chain compounds Cr2Cr(dpa)4Cl2, 1, Mo2Cr(dpa)4Cl2, 2, and W2Cr(dpa)4Cl2, 3 (dpa = 2,2'-dipyridylamido), have been studied using variable-temperature dc and ac magnetometry and high-frequency EPR spectroscopy. All three compounds possess an S = 2 electronic ground state arising from the terminal Cr(2+) ion, which exhibits slow magnetic relaxation under an applied magnetic field, as evidenced by ac magnetic susceptibility and magnetization measurements. The slow relaxation stems from the existence of an easy-axis magnetic anisotropy, which is bolstered by the axial symmetry of the compounds and has been quantified through rigorous high-frequency EPR measurements. The magnitude of D in these compounds increases when heavier ions are substituted into the trimetallic chain; thus D = -1.640, -2.187, and -3.617 cm(-1) for Cr2Cr(dpa)4Cl2, Mo2Cr(dpa)4Cl2, and W2Cr(dpa)4Cl2, respectively. Additionally, the D value measured for W2Cr(dpa)4Cl2 is the largest yet reported for a high-spin Cr(2+) system. While earlier studies have demonstrated that ligands containing heavy atoms can enhance magnetic anisotropy, this is the first report of this phenomenon using heavy metal atoms as "ligands".

3.
Inorg Chem ; 55(21): 10936-10946, 2016 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-27768287

RESUMO

The dichromium(III)-containing heteropoly-16-tungstates [CrIII2(B-ß-SiIVW8O31)2]14- (1) and [CrIII2(B-ß-GeIVW8O31)2]14- (2) were prepared via a one-pot reaction of the composing elements in aqueous, basic medium. Polyanions 1 and 2 represent the first examples of CrIII-containing heteropolytungstates comprising the octatungstate unit {XW8O31} (X = Si, Ge). Magnetic studies demonstrated that, in the solid state, the two polyanions exhibit a weak antiferromagnetic interaction between the two CrIII centers with J = -3.5 ± 0.5 cm-1, with no long-range ordering down to 1.8 K. The ground-state spin of polyanions 1 and 2 was thus deduced to be 0, but the detection of a complex set of EPR signals implies that there are thermally accessible excited states containing unpaired spins resulting from the two S = 3/2 CrIII ions. A comprehensive electrochemistry study on 1 and 2 in solution was performed, and biological tests showed that both polyanions display significant antidiabetic and anticancer activities.


Assuntos
Antineoplásicos/química , Cromo/química , Hipoglicemiantes/química , Compostos de Tungstênio/química , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Cromo/farmacologia , Cristalografia por Raios X , Diabetes Mellitus/tratamento farmacológico , Técnicas Eletroquímicas , Espectroscopia de Ressonância de Spin Eletrônica , Glucosidases/antagonistas & inibidores , Humanos , Hipoglicemiantes/farmacologia , Modelos Moleculares , Neoplasias/tratamento farmacológico , Compostos de Tungstênio/farmacologia , Células Vero
4.
Inorg Chem ; 53(17): 9274-83, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25137357

RESUMO

Two monochromium(III)-containing heteropolytungstates, [Cr(III)(HP(V)W7O28)2](13-) (1a) and [Cr(III)(HAs(V)W7O28)2](13-) (2a), were prepared via simple, one-pot reactions in aqueous, basic medium, by reaction of the composing elements, and then isolated as hydrated sodium salts, Na13[Cr(III)(HP(V)W7O28)2]·47H2O (1) and Na13[Cr(III)(HAs(V)W7O28)2]·52H2O (2). Polyanions 1a and 2a comprise an octahedrally coordinated Cr(III) ion, sandwiched by two {PW7} or {AsW7} units. Both compounds 1 and 2 were fully characterized in the solid state by single-crystal XRD, IR spectroscopy, thermogravimetric and elemental analyses, magnetic susceptibility, and EPR measurements. Magnetic studies on 1 and 2 demonstrated that both compounds exhibit appreciable deviation from typical paramagnetic behavior, and have a ground state S = 3/2, as expected for a Cr(III) ion, but with an exceptionally large zero-field uniaxial anisotropy parameter (D). EPR measurements on powder and single-crystal samples of 1 and 2 using 9.5, 34.5, and 239.2 GHz frequencies and over 4-295 K temperature fully support the magnetization results and show that D = +2.4 cm(-1), the largest and sign-assigned D-value so far reported for an octahedral Cr(III)-containing, molecular compound. Ligand field analysis of results from CASSCF and NEVPT2-correlated electronic structure calculations on Cr(OH)6(3-) model complexes allowed to unravel the crucial role of the second coordination sphere of Cr(III) for the unusually large magnetic anisotropy reflected by the experimental value of D. The newly developed theoretical modeling, combined with the synthetic procedure for producing such unusual magnetic molecules in a well-defined and essentially magnetically isolated environment, appears to be a versatile new research area.

5.
Appl Spectrosc ; 77(5): 449-456, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36464665

RESUMO

Diffuse reflectance spectroscopy measurements in the shortwave infrared (930-1600 nm) spectral region were acquired for Pu2(C2O4)3•9H2O and its thermal decomposition product, PuO2. We analyzed a total of eight PuO2 samples that were produced at different calcination temperatures (300, 350, 450, 525, 600, 675, 750, and 900 °C). Our goal was to identify spectroscopic fingerprints that could be used to gain retrospective information regarding the production parameters of these important nuclear compounds. The diffuse reflectance spectrum of Pu2(C2O4)3•9H2O features several broad bands that currently preclude detailed analysis. However, all PuO2 samples produced relatively sharp spectral features that got sharper and more intense for samples that were produced at higher calcination temperatures. The electronic band observed at 1433 nm in the diffuse reflectance spectra of PuO2 was found to be a sensitive indicator of crystallinity; a result that is corroborated by ancillary Raman spectroscopy measurements. Principal component analysis of diffuse reflectance spectra was able to clearly rank and categorize PuO2 samples based on the calcination temperature that was employed during their production. Thus, we show herein that important retrospective information pertaining to the process history of PuO2 can be gained through the relatively simplistic combination of diffuse reflectance spectroscopy and principal component analysis. This discovery presents a new method for determining the provenance and process history of PuO2 and should have an impact in the fields of nuclear forensics and nuclear nonproliferation.

6.
Dalton Trans ; 51(15): 6061-6067, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35355032

RESUMO

This manuscript describes the chemical transformations that occur during hydrolysis of uranium tetrafluoride (UF4) due to its storage in humid air (85% and 50% relative humidity) at ambient temperatures. This hydrolysis was previously reported to proceed slowly or not at all (depending on the percent relative humidity); however, previous reports relied primarily on X-ray diffraction methods to probe uranium speciation. In our report, we employ a battery of physiochemical probing techniques to explore potential hydrolysis, including Raman spectroscopy, powder X-ray diffraction, 19F nuclear magnetic resonance spectroscopy, scanning electron microscopy, and focused ion beam microscopy with energy-dispersive X-ray spectroscopy. Of these, only Raman spectroscopy proved to be particularly useful at observing chemical changes to UF4. It was found that anhydrous UF4 slightly oxidizes over the course of thirteen days to Schoepite-like uranium complexes and possibly UO3. In contrast, UF4 exposed to 50% relative humidity slightly decomposes into UO2F2, Schoepite-like uranium complexes, and possibly a high order uranium oxide that eluded chemical assignment (UxOy). Despite the rich chemical speciation observed in our Raman spectroscopy measurements, X-ray diffraction and 19F NMR measurements on the same material showed no changes. Microscopy measurements suggest that the observed reactions between UF4 and water occur primarily on the surface of UF4 particulates via a method that is visually similar to surface corrosion of metals. Therefore, we postulate that NMR spectroscopy and X-ray diffraction, which are well-suited for bulk analysis, are less suited than Raman spectroscopy to observe the surface-based reactions that occur to UF4 when exposed to humid air. Considering the importance of UF4 in the production of nuclear fuel and weapons, the results presented herein are widely applicable to numerous nuclear science fields where uranium detection and speciation in humid environments is of value, including nuclear nonproliferation and nuclear forensics.

7.
Dalton Trans ; 50(7): 2462-2471, 2021 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33507195

RESUMO

Uranium tetrafluoride (UF4) is an important intermediate in the production of UF6 and uranium metal. Room temperature hydrolysis of UF4 was investigated using a combination of Fluorine-19 nuclear magnetic resonance spectroscopy (19F NMR), Raman and infrared spectroscopy, powder X-ray diffraction, and microscopy measurements. UF4(H2O)2.5 was identified as the primary solid hydrolysis product when anhydrous UF4 was stirred in deionized water. Static NMR and 19F magic angle spinning NMR measurements revealed that a small amount of uranyl fluoride can also form when anhydrous UF4 is left in water, although this species comprises less than 5% of the total sample with the remaining parts being UF4(H2O)2.5. Since UF4 is generally considered to be stable under ambient conditions, these findings mark the first time that a room temperature reaction between UF4 and water has been detected and analyzed without interference from additional chemical reagents. The Raman characterization of UF4(H2O)2.5 presented herein is the first on record. Since UF4 is one of the most used intermediates during chemical conversion of uranium ore to uranium metal for nuclear fuel and weapons, the results presented herein are applicable to numerous nuclear science fields where solid state detection of uranium is of value, including nuclear nonproliferation, nuclear forensics, and environmental remediation.

9.
Dalton Trans ; 47(35): 12439-12448, 2018 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-30132769

RESUMO

The 15-copper(ii)-containing 36-tungsto-4-silicates [Cu15O2(OH)10X(A-α-SiW9O34)4]25- (X = Cl, 1; Br, 2) have been prepared in 70% yield by reaction of the trilacunary 9-tungstosilicate precursor [A-α-SiW9O34]10- with Cu2+ ions in aqueous pH 8 medium. Both polyanions 1 and 2 were isolated as hydrated mixed potassium/sodium salts and characterized in the solid state by FT-IR, TGA, single-crystal XRD, and elemental analysis. DC magnetic susceptibility measurements from 1.8-300 K established the ground state to be paramagnetic with a magnetic moment corresponding to 15 uncoupled Cu2+ (S = 1/2) ions. EPR measurements and simulations were consistent with this analysis. Electrochemical studies were performed for polyanions 1 and 2 dissolved in solution to elucidate the electroactivity of both copper and tungstate sites. Using 2 as a representative example, the electrocatalytic activity towards CO2 reduction upon deposition on a glassy carbon electrode surface, while retaining selectivity relative to hydrogen evolution, was demonstrated.

10.
Dalton Trans ; 44(46): 20121-30, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26530148

RESUMO

NONOates (diazeniumdiolates) containing the [X{N2O2}](-) functional group are frequently employed as nitric oxide (NO) donors in biology, and some NONOates have been shown to bind to metalloenzymes. We report the preparation, crystal structures, detailed magnetic behavior, redox properties, and reactivities of the first isolable alkyl C-NONOate complexes of heme models, namely (OEP)Fe(η(2)-ON(t-Bu)NO) (1) and (TPP)Fe(η(2)-ON(t-Bu)NO) (2) (OEP = octaethylporphyrinato dianion, TPP = tetraphenylporphyrinato dianion). The compounds display the unusual NONOate O,O-bidentate binding mode for porphyrins, resulting in significant apical Fe displacements (+0.60 Å for 1, and +0.69 Å for 2) towards the axial ligands. Magnetic susceptibility and magnetization measurements made from 1.8-300 K at magnetic fields from 0.02 to 5 T, yielded magnetic moments of 5.976 and 5.974 Bohr magnetons for 1 and 2, respectively, clearly identifying them as high-spin (S = 5/2) ferric compounds. Variable-frequency (9.4 GHz and 34.5 GHz) EPR measurements, coupled with computer simulations, confirmed the magnetization results and yielded more precise values for the spin Hamiltonian parameters: g(avg) = 2.00 ± 0.03, |D| = 3.89 ± 0.09 cm(-1), and E/D = 0.07 ± 0.01 for both compounds, where D and E are the axial and rhombic zero-field splittings. IR spectroelectrochemistry studies reveal that the first oxidations of these compounds occur at the porphyrin macrocycles and not at the Fe-NONOate moieties. Reactions of 1 and 2 with a histidine mimic (1-methylimidazole) generate RNO and NO, both of which may bind to the metal center if sterics allow, as shown by a comparative study with the Cupferron complex (T(p-OMe)PP)Fe(η(2)-ON(Ph)NO). Protonation of 1 and 2 yields N2O as a gaseous product, presumably from the initial generation of HNO that dimerizes to the observed N2O product.


Assuntos
Compostos Férricos/química , Compostos Nitrosos/química , Porfirinas/química , Aminação , Cristalografia por Raios X , Técnicas Eletroquímicas , Espectroscopia de Ressonância de Spin Eletrônica , Ligantes , Modelos Moleculares , Oxirredução , Espectrofotometria Infravermelho
11.
Chem Sci ; 6(5): 3148-3153, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28706686

RESUMO

Cr(i)Cl is a very unstable species. The present work describes the stabilisation of Cr(i)Cl in the low coordinate environment of cyclic alkyl(amino) carbene ligands and its synthetic application to yield an unprecedented cationic complex with a two coordinate Cr(i). One electron reduction of (cAAC)2CrCl2 (1) with equivalent amount of KC8 results in the formation of (cAAC)2CrCl (2), with a distorted trigonal planar configuration at the metal centre. SQUID, EPR and theoretical studies reveal a Cr(i) centre with S = 5/2 spin ground state for 2. It represents the first example of a mononuclear Cr complex showing slow relaxation of magnetisation under an applied magnetic field. The chlorine atom in 2 is expected to be prone to further reactions with appropriate reagents. This qualifies 2 as a promising precursor for the preparation of various interesting complexes with Cr(i) in a low coordinate environment. The first example of this metathesis reaction is observed when 2 is treated with Na[B(C6H3(CF3)2)4] resulting in [(cAAC)2Cr]+[B(C6H3(CF3)2)4]-, a linear cationic complex with two coordinate Cr(i) and an S = 5/2 spin ground state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA