Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 180(1): 188-204.e22, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31883794

RESUMO

Glioblastomas exhibit vast inter- and intra-tumoral heterogeneity, complicating the development of effective therapeutic strategies. Current in vitro models are limited in preserving the cellular and mutational diversity of parental tumors and require a prolonged generation time. Here, we report methods for generating and biobanking patient-derived glioblastoma organoids (GBOs) that recapitulate the histological features, cellular diversity, gene expression, and mutational profiles of their corresponding parental tumors. GBOs can be generated quickly with high reliability and exhibit rapid, aggressive infiltration when transplanted into adult rodent brains. We further demonstrate the utility of GBOs to test personalized therapies by correlating GBO mutational profiles with responses to specific drugs and by modeling chimeric antigen receptor T cell immunotherapy. Our studies show that GBOs maintain many key features of glioblastomas and can be rapidly deployed to investigate patient-specific treatment strategies. Additionally, our live biobank establishes a rich resource for basic and translational glioblastoma research.


Assuntos
Técnicas de Cultura de Células/métodos , Glioblastoma/metabolismo , Organoides/crescimento & desenvolvimento , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Bancos de Espécimes Biológicos , Feminino , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Modelos Biológicos , Organoides/metabolismo , Reprodutibilidade dos Testes , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
2.
Cell ; 165(5): 1238-1254, 2016 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-27118425

RESUMO

Cerebral organoids, three-dimensional cultures that model organogenesis, provide a new platform to investigate human brain development. High cost, variability, and tissue heterogeneity limit their broad applications. Here, we developed a miniaturized spinning bioreactor (SpinΩ) to generate forebrain-specific organoids from human iPSCs. These organoids recapitulate key features of human cortical development, including progenitor zone organization, neurogenesis, gene expression, and, notably, a distinct human-specific outer radial glia cell layer. We also developed protocols for midbrain and hypothalamic organoids. Finally, we employed the forebrain organoid platform to model Zika virus (ZIKV) exposure. Quantitative analyses revealed preferential, productive infection of neural progenitors with either African or Asian ZIKV strains. ZIKV infection leads to increased cell death and reduced proliferation, resulting in decreased neuronal cell-layer volume resembling microcephaly. Together, our brain-region-specific organoids and SpinΩ provide an accessible and versatile platform for modeling human brain development and disease and for compound testing, including potential ZIKV antiviral drugs.


Assuntos
Encéfalo/citologia , Técnicas de Cultura de Células , Modelos Biológicos , Organoides , Zika virus/fisiologia , Reatores Biológicos , Técnicas de Cultura de Células/economia , Embrião de Mamíferos , Desenvolvimento Embrionário , Humanos , Células-Tronco Pluripotentes Induzidas , Neurogênese , Neurônios/citologia , Organoides/virologia , Infecção por Zika virus/fisiopatologia , Infecção por Zika virus/virologia
3.
Annu Rev Neurosci ; 42: 249-269, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31283901

RESUMO

In 2015, public awareness of Zika virus (ZIKV) rose in response to alarming statistics of infants with microcephaly being born to women who were infected with the virus during pregnancy, triggering global concern over these potentially devastating consequences. Although we have discovered a great deal about the genome and pathogenesis of this reemergent flavivirus since this recent outbreak, we still have much more to learn, including the nature of the virus-host interactions and mechanisms that determine its tropism and pathogenicity in the nervous system, which are in turn shaped by the continual evolution of the virus. Inevitably, we will find out more about the potential long-term effects of ZIKV exposure on the nervous system from ongoing longitudinal studies. Integrating clinical and epidemiological data with a wider range of animal and human cell culture models will be critical to understanding the pathogenetic mechanisms and developing more specific antiviral compounds and vaccines.


Assuntos
Doenças do Sistema Nervoso/virologia , Infecção por Zika virus/fisiopatologia , Adulto , Animais , Encéfalo/embriologia , Encéfalo/patologia , Encéfalo/virologia , Células Cultivadas , Doenças Transmissíveis Emergentes , Surtos de Doenças , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Regulação Viral da Expressão Gênica , Vetores Genéticos/genética , Interações entre Hospedeiro e Microrganismos , Humanos , Recém-Nascido , Macaca mulatta , Camundongos , Microbiota , Microcefalia/embriologia , Microcefalia/etiologia , Microcefalia/virologia , Microglia/fisiologia , Modelos Animais , Doenças do Sistema Nervoso/fisiopatologia , Neurogênese , Gravidez , Complicações Infecciosas na Gravidez/fisiopatologia , Receptores Virais/fisiologia , Estudos em Gêmeos como Assunto , Vacinas Virais , Zika virus/imunologia , Zika virus/isolamento & purificação , Zika virus/patogenicidade , Zika virus/fisiologia , Infecção por Zika virus/diagnóstico , Infecção por Zika virus/veterinária
4.
Annu Rev Neurosci ; 37: 243-62, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24905596

RESUMO

Adult neurogenesis, a developmental process of generating functionally integrated neurons, occurs throughout life in the hippocampus of the mammalian brain and showcases the highly plastic nature of the mature central nervous system. Significant progress has been made in recent years to decipher how adult neurogenesis contributes to brain functions. Here we review recent findings that inform our understanding of adult hippocampal neurogenesis processes and special properties of adult-born neurons. We further discuss potential roles of adult-born neurons at the circuitry and behavioral levels in cognitive and affective functions and how their dysfunction may contribute to various brain disorders. We end by considering a general model proposing that adult neurogenesis is not a cell-replacement mechanism, but instead maintains a plastic hippocampal neuronal circuit via the continuous addition of immature, new neurons with unique properties and structural plasticity of mature neurons induced by new-neuron integration.


Assuntos
Encefalopatias/fisiopatologia , Hipocampo/fisiologia , Hipocampo/fisiopatologia , Neurogênese/fisiologia , Afeto/fisiologia , Animais , Cognição/fisiologia , Humanos , Modelos Neurológicos , Vias Neurais/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia
5.
Mol Psychiatry ; 26(4): 1346-1360, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-31444471

RESUMO

Psychiatric disorders are a collection of heterogeneous mental disorders arising from a contribution of genetic and environmental insults, many of which molecularly converge on transcriptional dysregulation, resulting in altered synaptic functions. The underlying mechanisms linking the genetic lesion and functional phenotypes remain largely unknown. Patient iPSC-derived neurons with a rare frameshift DISC1 (Disrupted-in-schizophrenia 1) mutation have previously been shown to exhibit aberrant gene expression and deficits in synaptic functions. How DISC1 regulates gene expression is largely unknown. Here we show that Activating Transcription Factor 4 (ATF4), a DISC1 binding partner, is more abundant in the nucleus of DISC1 mutant human neurons and exhibits enhanced binding to a collection of dysregulated genes. Functionally, overexpressing ATF4 in control neurons recapitulates deficits seen in DISC1 mutant neurons, whereas transcriptional and synaptic deficits are rescued in DISC1 mutant neurons with CRISPR-mediated heterozygous ATF4 knockout. By solving the high-resolution atomic structure of the DISC1-ATF4 complex, we show that mechanistically, the mutation of DISC1 disrupts normal DISC1-ATF4 interaction, and results in excessive ATF4 binding to DNA targets and deregulated gene expression. Together, our study identifies the molecular and structural basis of an DISC1-ATF4 interaction underlying transcriptional and synaptic dysregulation in an iPSC model of mental disorders.


Assuntos
Células-Tronco Pluripotentes Induzidas , Transtornos Mentais , Fator 4 Ativador da Transcrição/genética , Humanos , Proteínas do Tecido Nervoso/genética , Neurônios
6.
Nat Rev Neurosci ; 17(9): 537-49, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27334043

RESUMO

In the embryonic and adult brain, neural stem cells proliferate and give rise to neurons and glia through highly regulated processes. Epigenetic mechanisms - including DNA and histone modifications, as well as regulation by non-coding RNAs - have pivotal roles in different stages of neurogenesis. Aberrant epigenetic regulation also contributes to the pathogenesis of various brain disorders. Here, we review recent advances in our understanding of epigenetic regulation in neurogenesis and its dysregulation in brain disorders, including discussion of newly identified DNA cytosine modifications. We also briefly cover the emerging field of epitranscriptomics, which involves modifications of mRNAs and long non-coding RNAs.


Assuntos
Encéfalo/metabolismo , Epigênese Genética/genética , Neurogênese/genética , Animais , Encéfalo/citologia , Humanos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Neuroglia/citologia , Neuroglia/metabolismo , Neurônios/citologia , Neurônios/metabolismo
7.
Nature ; 515(7527): 414-8, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25132547

RESUMO

Dysregulated neurodevelopment with altered structural and functional connectivity is believed to underlie many neuropsychiatric disorders, and 'a disease of synapses' is the major hypothesis for the biological basis of schizophrenia. Although this hypothesis has gained indirect support from human post-mortem brain analyses and genetic studies, little is known about the pathophysiology of synapses in patient neurons and how susceptibility genes for mental disorders could lead to synaptic deficits in humans. Genetics of most psychiatric disorders are extremely complex due to multiple susceptibility variants with low penetrance and variable phenotypes. Rare, multiply affected, large families in which a single genetic locus is probably responsible for conferring susceptibility have proven invaluable for the study of complex disorders. Here we generated induced pluripotent stem (iPS) cells from four members of a family in which a frameshift mutation of disrupted in schizophrenia 1 (DISC1) co-segregated with major psychiatric disorders and we further produced different isogenic iPS cell lines via gene editing. We showed that mutant DISC1 causes synaptic vesicle release deficits in iPS-cell-derived forebrain neurons. Mutant DISC1 depletes wild-type DISC1 protein and, furthermore, dysregulates expression of many genes related to synapses and psychiatric disorders in human forebrain neurons. Our study reveals that a psychiatric disorder relevant mutation causes synapse deficits and transcriptional dysregulation in human neurons and our findings provide new insight into the molecular and synaptic etiopathology of psychiatric disorders.


Assuntos
Células-Tronco Pluripotentes Induzidas/patologia , Transtornos Mentais/patologia , Sinapses/patologia , Animais , Diferenciação Celular , Fibroblastos , Glutamina/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Transtornos Mentais/genética , Transtornos Mentais/metabolismo , Camundongos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Neurônios/patologia , Linhagem , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/patologia , Prosencéfalo/metabolismo , Prosencéfalo/patologia , Ligação Proteica , Sinapses/metabolismo , Transcriptoma
8.
Nature ; 489(7414): 150-4, 2012 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-22842902

RESUMO

Adult neurogenesis arises from neural stem cells within specialized niches. Neuronal activity and experience, presumably acting on this local niche, regulate multiple stages of adult neurogenesis, from neural progenitor proliferation to new neuron maturation, synaptic integration and survival. It is unknown whether local neuronal circuitry has a direct impact on adult neural stem cells. Here we show that, in the adult mouse hippocampus, nestin-expressing radial glia-like quiescent neural stem cells (RGLs) respond tonically to the neurotransmitter γ-aminobutyric acid (GABA) by means of γ2-subunit-containing GABAA receptors. Clonal analysis of individual RGLs revealed a rapid exit from quiescence and enhanced symmetrical self-renewal after conditional deletion of γ2. RGLs are in close proximity to terminals expressing 67-kDa glutamic acid decarboxylase (GAD67) of parvalbumin-expressing (PV+) interneurons and respond tonically to GABA released from these neurons. Functionally, optogenetic control of the activity of dentate PV+ interneurons, but not that of somatostatin-expressing or vasoactive intestinal polypeptide (VIP)-expressing interneurons, can dictate the RGL choice between quiescence and activation. Furthermore, PV+ interneuron activation restores RGL quiescence after social isolation, an experience that induces RGL activation and symmetrical division. Our study identifies a niche cell­signal­receptor trio and a local circuitry mechanism that control the activation and self-renewal mode of quiescent adult neural stem cells in response to neuronal activity and experience.


Assuntos
Linhagem da Célula , Vias Neurais/fisiologia , Células-Tronco Neurais/citologia , Neurogênese , Animais , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Giro Denteado/citologia , Giro Denteado/efeitos dos fármacos , Giro Denteado/metabolismo , Feminino , Moduladores GABAérgicos/farmacologia , Agonistas de Receptores de GABA-A/farmacologia , Antagonistas de Receptores de GABA-A/farmacologia , Interneurônios/citologia , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Neurogênese/efeitos dos fármacos , Neuroglia/citologia , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Parvalbuminas/metabolismo , Receptores de GABA-A/metabolismo , Transdução de Sinais/efeitos dos fármacos , Somatostatina/metabolismo , Nicho de Células-Tronco/efeitos dos fármacos , Nicho de Células-Tronco/fisiologia , Peptídeo Intestinal Vasoativo/metabolismo , Ácido gama-Aminobutírico/metabolismo
9.
Nucleic Acids Res ; 44(18): 8610-8620, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27580721

RESUMO

Zika virus (ZIKV) infection causes microcephaly and has been linked to other brain abnormalities. How ZIKV impairs brain development and function is unclear. Here we systematically profiled transcriptomes of human neural progenitor cells exposed to Asian ZIKVC, African ZIKVM, and dengue virus (DENV). In contrast to the robust global transcriptome changes induced by DENV, ZIKV has a more selective and larger impact on expression of genes involved in DNA replication and repair. While overall expression profiles are similar, ZIKVC, but not ZIKVM, induces upregulation of viral response genes and TP53. P53 inhibitors can block the apoptosis induced by both ZIKVC and ZIKVM in hNPCs, with higher potency against ZIKVC-induced apoptosis. Our analyses reveal virus- and strain-specific molecular signatures associated with ZIKV infection. These datasets will help to investigate ZIKV-host interactions and identify neurovirulence determinants of ZIKV.


Assuntos
Córtex Cerebral/citologia , Perfilação da Expressão Gênica , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/virologia , Infecção por Zika virus/genética , Zika virus/fisiologia , Morte Celular/genética , Linhagem Celular , Reparo do DNA/genética , Replicação do DNA/genética , Vírus da Dengue/fisiologia , Humanos , Transdução de Sinais/genética , Especificidade da Espécie , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima/genética , Infecção por Zika virus/virologia
10.
EMBO J ; 31(23): 4373-4, 2012 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-23073347

RESUMO

During nervous system development, programmed cell death is considered as an essential adaptive process. The mechanism by which the number of mature neurons is determined in the central nervous system is not well understood. In a recent Nature paper, Southwell et al (2012) demonstrate that cortical GABAergic interneuron cell death is intrinsically determined without the need to compete for extrinsic survival signals derived from other cell types.


Assuntos
Interneurônios/fisiologia , Animais , Mapeamento Encefálico/métodos , Morte Celular , Biologia do Desenvolvimento/métodos , GABAérgicos/metabolismo , Junções Comunicantes , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Modelos Biológicos , Modelos Neurológicos , Neocórtex/metabolismo , Sistema Nervoso/embriologia , Neurônios/metabolismo , Transdução de Sinais
11.
J Neurosci ; 33(28): 11400-11, 2013 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-23843512

RESUMO

In the adult mammalian hippocampus, newborn dentate granule cells are continuously integrated into the existing circuitry and contribute to specific brain functions. Little is known about the axonal development of these newborn neurons in the adult brain due to technological challenges that have prohibited large-scale reconstruction of long, thin, and complex axonal processes within the mature nervous system. Here, using a new serial end-block imaging (SEBI) technique, we seamlessly reconstructed axonal and dendritic processes of intact individual retrovirus-labeled newborn granule cells at different developmental stages in the young adult mouse hippocampus. We found that adult-born dentate granule cells exhibit tortuous, yet highly stereotyped, axonal projections to CA3 hippocampal subregions. Primary axonal projections of cohorts of new neurons born around the same time organize into laminar patterns with staggered terminations that stack along the septo-temporal hippocampal axis. Analysis of individual newborn neuron development further defined an initial phase of rapid axonal and dendritic growth within 21 d after newborn neuron birth, followed by minimal growth of primary axonal and whole dendritic processes through the last time point examined at 77 d. Our results suggest that axonal development and targeting is a highly orchestrated, precise process in the adult brain. These findings demonstrate a striking regenerative capacity of the mature CNS to support long-distance growth and guidance of neuronal axons. Our SEBI approach can be broadly applied for analysis of intact, complex neuronal projections in limitless tissue volume.


Assuntos
Axônios/fisiologia , Hipocampo/citologia , Hipocampo/crescimento & desenvolvimento , Neurogênese/fisiologia , Neurônios/fisiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Axônios/química , Feminino , Hipocampo/química , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal/métodos , Neurônios/química
12.
bioRxiv ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38496540

RESUMO

Glioblastoma (GBM), a universally fatal brain cancer, infiltrates the brain and can be synaptically innervated by neurons, which drives tumor progression 1-6 . Synaptic inputs onto GBM cells identified so far are largely short-range and glutamatergic 7-9 . The extent of integration of GBM cells into brain-wide neuronal circuitry is not well understood. Here we applied a rabies virus-mediated retrograde monosynaptic tracing approach 10-12 to systematically investigate circuit integration of human GBM organoids transplanted into adult mice. We found that GBM cells from multiple patients rapidly integrated into brain-wide neuronal circuits and exhibited diverse local and long-range connectivity. Beyond glutamatergic inputs, we identified a variety of neuromodulatory inputs across the brain, including cholinergic inputs from the basal forebrain. Acute acetylcholine stimulation induced sustained calcium oscillations and long-lasting transcriptional reprogramming of GBM cells into a more invasive state via the metabotropic CHRM3 receptor. CHRM3 downregulation suppressed GBM cell invasion, proliferation, and survival in vitro and in vivo. Together, these results reveal the capacity of human GBM cells to rapidly and robustly integrate into anatomically and molecularly diverse neuronal circuitry in the adult brain and support a model wherein rapid synapse formation onto GBM cells and transient activation of upstream neurons may lead to a long-lasting increase in fitness to promote tumor infiltration and progression.

13.
Curr Opin Neurobiol ; 79: 102672, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36634408

RESUMO

Human pluripotent stem cells can be differentiated into cell types that are representative of the central nervous system. Under specific culture conditions, these cells can be induced to self-organize into 3D organoids that are reminiscent of the developing brain. Microglia are the resident immune cells of the brain but are derived from a different lineage than neural cells, which presents a challenge to modeling neuroimmune interactions. Although human microglia-like cells can be differentiated from pluripotent stem cells, important considerations include ensuring the identity of microglia, which can be influenced by both the lineage and the local environment, and developing culture methods that promote the integration and survival of diverse cell types in a physiologically relevant model. Recently, several strategies to generate neural organoids with integrated microglia have been demonstrated and provide new opportunities to interrogate interactions among microglia and neurons during development and in response to injury and disease.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Humanos , Neuroimunomodulação , Células-Tronco Pluripotentes Induzidas/metabolismo , Encéfalo , Sistema Nervoso Central , Diferenciação Celular
14.
Cell Rep ; 42(4): 112334, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37043350

RESUMO

Hippocampal place cells exhibit spatially modulated firing, or place fields, which can remap to encode changes in the environment or other variables. Unique among hippocampal subregions, the dentate gyrus (DG) has two excitatory populations of place cells, granule cells and mossy cells, which are among the least and most active spatially modulated cells in the hippocampus, respectively. Previous studies of remapping in the DG have drawn different conclusions about whether granule cells exhibit global remapping and contribute to the encoding of context specificity. By recording granule cells and mossy cells as mice foraged in different environments, we found that by most measures, both granule cells and mossy cells remapped robustly but through different mechanisms that are consistent with firing properties of each cell type. Our results resolve the ambiguity surrounding remapping in the DG and suggest that most spatially modulated granule cells contribute to orthogonal representations of distinct spatial contexts.


Assuntos
Fibras Musgosas Hipocampais , Células de Lugar , Camundongos , Animais , Giro Denteado/metabolismo , Hipocampo
15.
J Neurosci ; 31(45): 16070-5, 2011 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-22072658

RESUMO

The remarkable advances in cellular reprogramming have made it possible to generate a renewable source of human neurons from fibroblasts obtained from skin samples of neonates and adults. As a result, we can now investigate the etiology of neurological diseases at the cellular level using neuronal populations derived from patients, which harbor the same genetic mutations thought to be relevant to the risk for pathology. Therapeutic implications include the ability to establish new humanized disease models for understanding mechanisms, conduct high-throughput screening for novel biogenic compounds to reverse or prevent the disease phenotype, identify and engineer genetic rescue of causal mutations, and develop patient-specific cellular replacement strategies. Although this field offers enormous potential for understanding and treating neurological disease, there are still many issues that must be addressed before we can fully exploit this technology. Here we summarize several recent studies presented at a symposium at the 2011 annual meeting of the Society for Neuroscience, which highlight innovative approaches to cellular reprogramming and how this revolutionary technique is being refined to model neurodevelopmental and neurodegenerative diseases, such as autism spectrum disorders, schizophrenia, familial dysautonomia, and Alzheimer's disease.


Assuntos
Modelos Biológicos , Doenças do Sistema Nervoso , Neurônios/patologia , Neurônios/fisiologia , Células-Tronco/fisiologia , Animais , Humanos , Doenças do Sistema Nervoso/etiologia , Doenças do Sistema Nervoso/patologia , Doenças do Sistema Nervoso/terapia , Transplante de Células-Tronco
16.
Front Virol ; 22022.
Artigo em Inglês | MEDLINE | ID: mdl-36325520

RESUMO

Understanding the impact of viral pathogens on the human central nervous system (CNS) has been challenging due to the lack of viable human CNS models for controlled experiments to determine the causal factors underlying pathogenesis. Human embryonic stem cells (ESCs) and, more recently, cellular reprogramming of adult somatic cells to generate human induced pluripotent stem cells (iPSCs) provide opportunities for directed differentiation to neural cells that can be used to evaluate the impact of known and emerging viruses on neural cell types. Pluripotent stem cells (PSCs) can be induced to neural lineages in either two- (2D) or three-dimensional (3D) cultures, each bearing distinct advantages and limitations for modeling viral pathogenesis and evaluating effective therapeutics. Here we review the current state of technology in stem cell-based modeling of the CNS and how these models can be used to determine viral tropism and identify cellular phenotypes to investigate virus-host interactions and facilitate drug screening. We focus on several viruses (e.g., human immunodeficiency virus (HIV), herpes simplex virus (HSV), Zika virus (ZIKV), human cytomegalovirus (HCMV), SARS-CoV-2, West Nile virus (WNV)) to illustrate key advantages, as well as challenges, of PSC-based models. We also discuss how human PSC-based models can be used to evaluate the safety and efficacy of therapeutic drugs by generating data that are complementary to existing preclinical models. Ultimately, these efforts could facilitate the movement towards personalized medicine and provide patients and physicians with an additional source of information to consider when evaluating available treatment strategies.

17.
J Mol Biol ; 434(3): 167243, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34536442

RESUMO

Brain organoids are self-organized three-dimensional aggregates generated from pluripotent stem cells. They exhibit complex cell diversities and organized architectures that resemble human brain development ranging from neural tube formation, neuroepithelium differentiation, neurogenesis and gliogenesis, to neural circuit formation. Rapid advancements in brain organoid culture technologies have allowed researchers to generate more accurate models of human brain development and neurological diseases. These models also allow for direct investigation of pathological processes associated with infectious diseases affecting the nervous system. In this review, we first briefly summarize recent advancements in brain organoid methodologies and neurodevelopmental processes that can be effectively modeled by brain organoids. We then focus on applications of brain organoids to investigate the pathogenesis of neurotropic viral infection. Finally, we discuss limitations of the current brain organoid methodologies as well as applications of other organ specific organoids in the infectious disease research.


Assuntos
Encéfalo , Viroses do Sistema Nervoso Central , Organoides , Encéfalo/crescimento & desenvolvimento , Encéfalo/virologia , Viroses do Sistema Nervoso Central/virologia , Humanos , Neurogênese , Organoides/virologia
18.
Curr Biol ; 32(5): 1088-1101.e5, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35108522

RESUMO

The hippocampus is involved in the formation of memories that require associations among stimuli to construct representations of space and the items and events within that space. Neurons in the dentate gyrus (DG), an initial input region of the hippocampus, have robust spatial tuning, but it is unclear how nonspatial information may be integrated with spatial activity in this region. We recorded from the DG of 21 adult mice as they foraged for food in an environment that contained discrete objects. We found DG cells with multiple firing fields at a fixed distance and direction from objects (landmark vector cells) and cells that exhibited localized changes in spatial firing when objects in the environment were manipulated. By classifying recorded DG cells into putative dentate granule cells and mossy cells, we examined how the addition or displacement of objects affected the spatial firing of these DG cell types. Object-related activity was detected in a significant proportion of mossy cells. Although few granule cells with responses to object manipulations were recorded, likely because of the sparse nature of granule cell firing, there was generally no significant difference in the proportion of granule cells and mossy cells with object responses. When mice explored a second environment with the same objects, DG spatial maps completely reorganized, and a different subset of cells responded to object manipulations. Together, these data reveal the capacity of DG cells to detect small changes in the environment while preserving a stable spatial representation of the overall context.


Assuntos
Hipocampo , Neurônios , Animais , Giro Denteado/fisiologia , Hipocampo/fisiologia , Camundongos , Neurônios/fisiologia
19.
Biol Psychiatry ; 92(10): 815-826, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34247782

RESUMO

BACKGROUND: Gene dosage imbalance caused by copy number variations (CNVs) is a prominent contributor to brain disorders. In particular, 15q11.2 CNV duplications and deletions have been associated with autism spectrum disorder and schizophrenia, respectively. The mechanism underlying these diametric contributions remains unclear. METHODS: We established both loss-of-function and gain-of-function mouse models of Cyfip1, one of four genes within 15q11.2 CNVs. To assess the functional consequences of altered CYFIP1 levels, we performed systematic investigations on behavioral, electrophysiological, and biochemical phenotypes in both mouse models. In addition, we utilized RNA immunoprecipitation sequencing (RIP-seq) analysis to reveal molecular targets of CYFIP1 in vivo. RESULTS: Cyfip1 loss-of-function and gain-of function mouse models exhibited distinct and shared behavioral abnormalities related to autism spectrum disorder and schizophrenia. RIP-seq analysis identified messenger RNA targets of CYFIP1 in vivo, including postsynaptic NMDA receptor (NMDAR) complex components. In addition, these mouse models showed diametric changes in levels of postsynaptic NMDAR complex components at synapses because of dysregulated protein translation, resulting in bidirectional alteration of NMDAR-mediated signaling. Importantly, pharmacological balancing of NMDAR signaling in these mouse models with diametric Cyfip1 dosages rescues behavioral abnormalities. CONCLUSIONS: CYFIP1 regulates protein translation of NMDAR and associated complex components at synapses to maintain normal synaptic functions and behaviors. Our integrated analyses provide insight into how gene dosage imbalance caused by CNVs may contribute to divergent neuropsychiatric disorders.


Assuntos
Transtorno do Espectro Autista , Transtornos Mentais , Camundongos , Animais , Receptores de N-Metil-D-Aspartato/genética , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Variações do Número de Cópias de DNA , Camundongos Endogâmicos C57BL , N-Metilaspartato/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Modelos Animais de Doenças , RNA Mensageiro , RNA
20.
J Neuroimmune Pharmacol ; 16(1): 113-129, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-31512167

RESUMO

As antiretroviral therapy (ART) becomes increasingly affordable and accessible to women of childbearing age across the globe, the number of children who are exposed to Human Immunodeficiency Viruses (HIV) but remain uninfected is on the rise, almost all of whom were also exposed to ART perinatally. Although ART has successfully aided in the decline of mother-to-child-transmission of HIV, the long-term effects of in utero exposure to ART on fetal and postnatal neurodevelopment remain unclear. Evaluating the safety and efficacy of therapeutic drugs for pregnant women is a challenge due to the historic limitations on their inclusion in clinical trials and the dynamic physiological states during pregnancy that can alter the pharmacokinetics of drug metabolism and fetal drug exposure. Thus, much of our data on the potential consequences of ART drugs on the developing nervous system comes from preclinical animal models and clinical observational studies. In this review, we will discuss the current state of knowledge and existing approaches to investigate whether ART affects fetal brain development, and describe novel human stem cell-based strategies that may provide additional information to better predict the impact of specific drugs on the human central nervous system. Graphical Abstract Approaches to evaluate the impact of drugs on the developing brain. Dysregulation of the developing nervous system can lead to long-lasting changes. Integration of data from animal models, clinical observations, and cell culture studies is needed to predict the safety of therapeutic antiretroviral drugs during pregnancy. New approaches include human induced pluripotent stem cell (iPSC)-based 2D and 3D models of neuronal networks and brain regions, as well as single cell profiling in response to drug exposure.


Assuntos
Fármacos Anti-HIV/efeitos adversos , Transtornos do Neurodesenvolvimento/induzido quimicamente , Adulto , Animais , Fármacos Anti-HIV/farmacocinética , Fármacos Anti-HIV/uso terapêutico , Encéfalo/efeitos dos fármacos , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Técnicas de Cultura de Células , Divisão Celular , Feminino , Feto/efeitos dos fármacos , Previsões , Infecções por HIV/congênito , Infecções por HIV/tratamento farmacológico , Infecções por HIV/transmissão , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Recém-Nascido , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Troca Materno-Fetal , Camundongos , Mitocôndrias/efeitos dos fármacos , Modelos Animais , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Estresse Oxidativo , Guias de Prática Clínica como Assunto , Gravidez , Complicações Infecciosas na Gravidez/tratamento farmacológico , Efeitos Tardios da Exposição Pré-Natal , Sinapses
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA