Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Am J Hum Genet ; 93(5): 932-44, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24183451

RESUMO

Bidirectional (anterograde and retrograde) motor-based intraflagellar transport (IFT) governs cargo transport and delivery processes that are essential for primary cilia growth and maintenance and for hedgehog signaling functions. The IFT dynein-2 motor complex that regulates ciliary retrograde protein transport contains a heavy chain dynein ATPase/motor subunit, DYNC2H1, along with other less well functionally defined subunits. Deficiency of IFT proteins, including DYNC2H1, underlies a spectrum of skeletal ciliopathies. Here, by using exome sequencing and a targeted next-generation sequencing panel, we identified a total of 11 mutations in WDR34 in 9 families with the clinical diagnosis of Jeune syndrome (asphyxiating thoracic dystrophy). WDR34 encodes a WD40 repeat-containing protein orthologous to Chlamydomonas FAP133, a dynein intermediate chain associated with the retrograde intraflagellar transport motor. Three-dimensional protein modeling suggests that the identified mutations all affect residues critical for WDR34 protein-protein interactions. We find that WDR34 concentrates around the centrioles and basal bodies in mammalian cells, also showing axonemal staining. WDR34 coimmunoprecipitates with the dynein-1 light chain DYNLL1 in vitro, and mining of proteomics data suggests that WDR34 could represent a previously unrecognized link between the cytoplasmic dynein-1 and IFT dynein-2 motors. Together, these data show that WDR34 is critical for ciliary functions essential to normal development and survival, most probably as a previously unrecognized component of the mammalian dynein-IFT machinery.


Assuntos
Proteínas de Transporte/genética , Dineínas do Citoplasma/genética , Síndrome de Ellis-Van Creveld/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Animais , Povo Asiático/genética , Axonema/genética , Criança , Chlamydomonas/genética , Cílios/genética , Cílios/metabolismo , Citoesqueleto/genética , Citoesqueleto/metabolismo , Síndrome de Ellis-Van Creveld/patologia , Exoma , Éxons , Humanos , Lactente , Recém-Nascido , Mutação , Conformação Proteica , Proteômica , População Branca/genética
2.
J Vis Exp ; (96): e52540, 2015 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-25742415

RESUMO

The zebrafish embryo offers a tractable model to study organogenesis and model human genetic disease. Despite its relative simplicity, the zebrafish kidney develops and functions in almost the same way as humans. A major difference in the construction of the human kidney is the presence of millions of nephrons compared to the zebrafish that has only two. However, simplifying such a complex system into basic functional units has aided our understanding of how the kidney develops and operates. In zebrafish, the midline located glomerulus is responsible for the initial blood filtration into two pronephric tubules that diverge to run bilaterally down the embryonic axis before fusing to each other at the cloaca. The pronephric tubules are heavily populated by motile cilia that facilitate the movement of filtrate along the segmented tubule, allowing the exchange of various solutes before finally exiting via the cloaca. Many genes responsible for CKD, including those related to ciliogenesis, have been studied in zebrafish. However, a major draw back has been the difficulty in evaluating zebrafish kidney function after genetic manipulation. Traditional assays to measure kidney dysfunction in humans have proved non translational to zebrafish, mainly due to their aquatic environment and small size. For example, it is not physically possible to extract blood from embryonic staged fish for analysis of urea and creatinine content, as they are too small. In addition, zebrafish do not produce enough urine for testing on a simple proteinuria 'dipstick', which is often performed during initial patient examinations. We describe a fluorescent assay that utilizes the optical transparency of the zebrafish to quantitatively monitor the clearance of a fluorescent dye, over time, from the vasculature and out through the kidney, to give a read out of renal function.


Assuntos
Modelos Animais de Doenças , Corantes Fluorescentes/farmacocinética , Rim/metabolismo , Insuficiência Renal Crônica/metabolismo , Animais , Feminino , Masculino , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/urina , Peixe-Zebra
3.
PLoS One ; 9(2): e87662, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24503721

RESUMO

Common intronic variants in the Human fat mass and obesity-associated gene (FTO) are found to be associated with an increased risk of obesity. Overexpression of FTO correlates with increased food intake and obesity, whilst loss-of-function results in lethality and severe developmental defects. Despite intense scientific discussions around the role of FTO in energy metabolism, the function of FTO during development remains undefined. Here, we show that loss of Fto leads to developmental defects such as growth retardation, craniofacial dysmorphism and aberrant neural crest cells migration in Zebrafish. We find that the important developmental pathway, Wnt, is compromised in the absence of FTO, both in vivo (zebrafish) and in vitro (Fto(-/-) MEFs and HEK293T). Canonical Wnt signalling is down regulated by abrogated ß-Catenin translocation to the nucleus whilst non-canonical Wnt/Ca(2+) pathway is activated via its key signal mediators CaMKII and PKCδ. Moreover, we demonstrate that loss of Fto results in short, absent or disorganised cilia leading to situs inversus, renal cystogenesis, neural crest cell defects and microcephaly in Zebrafish. Congruently, Fto knockout mice display aberrant tissue specific cilia. These data identify FTO as a protein-regulator of the balanced activation between canonical and non-canonical branches of the Wnt pathway. Furthermore, we present the first evidence that FTO plays a role in development and cilia formation/function.


Assuntos
Cílios/genética , Cílios/metabolismo , Anormalidades Congênitas/genética , Anormalidades Congênitas/metabolismo , Proteínas/genética , Via de Sinalização Wnt , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Animais , Sinalização do Cálcio , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Linhagem Celular , Cílios/patologia , Ativação Enzimática , Feminino , Técnicas de Inativação de Genes , Humanos , Camundongos , Camundongos Knockout , Morfogênese/genética , Especificidade de Órgãos/genética , Fenótipo , Peixe-Zebra , beta Catenina/metabolismo
4.
Nat Commun ; 5: 5308, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25374274

RESUMO

Type 2 diabetes mellitus is affecting more than 382 million people worldwide. Although much progress has been made, a comprehensive understanding of the underlying disease mechanism is still lacking. Here we report a role for the ß-cell primary cilium in type 2 diabetes susceptibility. We find impaired glucose handling in young Bbs4(-/-) mice before the onset of obesity. Basal body/ciliary perturbation in murine pancreatic islets leads to impaired first phase insulin release ex and in vivo. Insulin receptor is recruited to the cilium of stimulated ß-cells and ciliary/basal body integrity is required for activation of downstream targets of insulin signalling. We also observe a reduction in the number of ciliated ß-cells along with misregulated ciliary/basal body gene expression in pancreatic islets in a diabetic rat model. We suggest that ciliary function is implicated in insulin secretion and insulin signalling in the ß-cell and that ciliary dysfunction could contribute to type 2 diabetes susceptibility.


Assuntos
Cílios/fisiologia , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/fisiopatologia , Suscetibilidade a Doenças/etiologia , Suscetibilidade a Doenças/fisiopatologia , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Glucose/metabolismo , Homeostase/fisiologia , Secreção de Insulina , Ilhotas Pancreáticas/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/deficiência , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/fisiologia , Obesidade/complicações , Obesidade/fisiopatologia , Fenótipo , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA