Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Microbiol Immunol ; 61(5): 149-158, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28370432

RESUMO

H5 highly pathogenic avian influenza viruses (HPAIV) have spread in both poultry and wild birds since late 2003. Continued circulation of HPAIV in poultry in several regions of the world has led to antigenic drift. In the present study, we analyzed the antigenic properties of H5 HPAIV isolated in Asia using four neutralizing mAbs recognizing hemagglutinin, which were established using A/chicken/Kumamoto/1-7/2014 (H5N8), belonging to clade 2.3.4.4 and also using polyclonal antibodies. Viruses of clades 1.1, 2.3.2.1, 2.3.4, and 2.3.4.4 had different reactivity patterns to the panel of mAbs, thereby indicating that the antigenicity of the viruses of clade 2.3.4.4 were similar but differed from the other clades. In particular, the antigenicity of the viruses of clade 2.3.4.4 differed from those of the viruses of clades 2.3.4 and 2.3.2.1, which suggests that the recent H5 HPAIV have further evolved antigenically divergent. In addition, reactivity of antiserum suggests that the antigenicity of viruses of clade 2.3.4.4 differed slightly among groups A, B, and C. Vaccines are still used in poultry in endemic countries, so the antigenicity of H5 HPAIV should be monitored continually to facilitate control of avian influenza. The panel of mAbs established in the present study will be useful for detecting antigenic drift in the H5 viruses that emerge from the current strains.


Assuntos
Anticorpos Monoclonais/imunologia , Variação Antigênica/imunologia , Aves/virologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Vírus da Influenza A Subtipo H5N8/imunologia , Influenza Aviária/virologia , Animais , Anticorpos Antivirais/imunologia , Variação Antigênica/genética , Ásia , Galinhas/imunologia , Galinhas/virologia , Patos/imunologia , Patos/virologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Virus da Influenza A Subtipo H5N1/classificação , Virus da Influenza A Subtipo H5N1/genética , Vírus da Influenza A Subtipo H5N8/classificação , Vírus da Influenza A Subtipo H5N8/genética , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/virologia
2.
Virus Genes ; 51(1): 57-68, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26036326

RESUMO

Migratory water birds are the natural reservoir of influenza A viruses. H5 and H7 influenza viruses are isolated over the world and also circulate among poultry in Asia. In 2010, two H5N1 highly pathogenic avian influenza viruses (HPAIVs) were isolated from fecal samples of water birds on the flyway of migration from Siberia, Russia to the south in Hokkaido, Japan. H7N9 viruses are sporadically isolated from humans and circulate in poultry in China. To monitor whether these viruses have spread in the wild bird population, we conducted virological surveillance of avian influenza in migratory water birds in autumn from 2010 to 2014. A total of 8103 fecal samples from migratory water birds were collected in Japan and Mongolia, and 350 influenza viruses including 13 H5 and 19 H7 influenza viruses were isolated. A phylogenetic analysis revealed that all isolates are genetically closely related to viruses circulating among wild water birds. The results of the antigenic analysis indicated that the antigenicity of viruses in wild water birds is highly stable despite their nucleotide sequence diversity but is distinct from that of HPAIVs recently isolated in Asia. The present results suggest that HPAIVs and Chinese H7N9 viruses were not predominantly circulating in migratory water birds; however, continued monitoring of H5 and H7 influenza viruses both in domestic and wild birds is recommended for the control of avian influenza.


Assuntos
Antígenos Virais/análise , Antígenos Virais/genética , Vírus da Influenza A/genética , Vírus da Influenza A/isolamento & purificação , Influenza Aviária/virologia , Animais , Aves , Análise por Conglomerados , Fezes/virologia , Variação Genética , Japão , Dados de Sequência Molecular , Mongólia , Filogenia , RNA Viral/genética , Análise de Sequência de DNA , Homologia de Sequência
3.
Microorganisms ; 11(2)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36838209

RESUMO

The H9 and H6 subtypes of low pathogenicity avian influenza viruses (LPAIVs) cause substantial economic losses in poultry worldwide, including Vietnam. Herein, we characterized Vietnamese H9 and H6 LPAIVs to facilitate the control of avian influenza. The space-time representative viruses of each subtype were selected based on active surveillance from 2014 to 2018 in Vietnam. Phylogenetic analysis using hemagglutinin genes revealed that 54 H9 and 48 H6 Vietnamese LPAIVs were classified into the sublineages Y280/BJ94 and Group II, respectively. Gene constellation analysis indicated that 6 and 19 genotypes of the H9 and H6 subtypes, respectively, belonged to the representative viruses. The Vietnamese viruses are genetically related to the previous isolates and those in neighboring countries, indicating their circulation in poultry after being introduced into Vietnam. The antigenicity of these subtypes was different from that of viruses isolated from wild birds. Antigenicity was more conserved in the H9 viruses than in the H6 viruses. Furthermore, a representative H9 LPAIV exhibited systemic replication in chickens, which was enhanced by coinfection with avian pathogenic Escherichia coli O2. Although H9 and H6 were classified as LPAIVs, their characterization indicated that their silent spread might significantly affect the poultry industry.

4.
JAC Antimicrob Resist ; 5(2): dlad031, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36994233

RESUMO

Despite the escalating burden of antimicrobial resistance (AMR), the global response has not sufficiently matched the scale and scope of the issue, especially in low- and middle-income countries (LMICs). While many countries have adopted national action plans to combat AMR, their implementation has lagged due to resource constraints, dysfunctional multisectoral coordination mechanisms and, importantly, an under-recognized lack of technical capacity to adapt evidence-based AMR mitigation interventions to local contexts. AMR interventions should be tailored, context-specific, cost-effective and sustainable. The implementation and subsequent scale-up of these interventions require multidisciplinary intervention-implementation research (IIR). IIR involves both quantitative and qualitative approaches, occurs across a three-phase continuum (proof of concept, proof of implementation and informing scale-up), and across four context domains (inner setting, outer setting, stakeholders and the implementation process). We describe the theoretical underpinnings of implementation research (IR), its various components, and how to construct different IR strategies to facilitate sustainable uptake of AMR interventions. Additionally, we provide real-world examples of AMR strategies and interventions to demonstrate these principles in practice. IR provides a practical framework to implement evidence-based and sustainable AMR mitigation interventions.

5.
Transbound Emerg Dis ; 69(4): e831-e844, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34734678

RESUMO

In South Vietnam, live bird markets (LBMs) are key in the value chain of poultry products and spread of avian influenza virus (AIV) although they may not be the sole determinant of AIV prevalence. For this reason, a risk analysis of AIV prevalence was conducted accounting for all value chain factors. A cross-sectional study of poultry flock managers and poultry on backyard farms, commercial (high biosecurity) farms, LBMs and poultry delivery stations (PDSs) in four districts of Vinh Long province was conducted between December 2016 and August 2017. A total of 3597 swab samples were collected from birds from 101 backyard farms, 50 commercial farms, 58 sellers in LBMs and 19 traders in PDSs. Swab samples were submitted for AIV isolation. At the same time a questionnaire was administered to flock managers asking them to provide details of their knowledge, attitude and practices related to avian influenza. Multiple correspondence analysis and a mixed-effects multivariable logistic regression model were developed to identify enterprise and flock manager characteristics that increased the risk of AIV positivity. A total of 274 birds were positive for AIV isolation, returning an estimated true prevalence of 7.6% [95% confidence interval (CI): 6.8%-8.5%]. The odds of a bird being AIV positive if it was from an LBM or PDS were 45 (95% CI: 3.4-590) and 25 (95% CI: 1.4-460), respectively, times higher to the odds of a bird from a commercial poultry farm being AIV positive. The odds of birds being AIV positive for respondents with a mixed (uncertain or inconsistent) level and a low level of knowledge about AI were 5.0 (95% CI: 0.20-130) and 3.5 (95% CI: 0.2-62), respectively, times higher to the odd of birds being positive for respondents with a good knowledge of AI. LBMs and PDSs should receive specific emphasis in AI control programs in Vietnam. Our findings provide evidence to support the hypothesis that incomplete respondent knowledge of AI and AIV spread mechanism were associated with an increased risk of AIV positivity. Delivery of education programs specifically designed for those in each enterprise will assist in this regard. The timing and frequency of delivery of education programs are likely to be important if the turnover of those working in LBMs and PDSs is high.


Assuntos
Vírus da Influenza A , Influenza Aviária , Animais , Estudos Transversais , Influenza Aviária/epidemiologia , Aves Domésticas , Vietnã/epidemiologia
6.
J Vet Med Sci ; 84(6): 860-868, 2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35570003

RESUMO

The impact of low pathogenicity avian influenza (LPAI) has been confirmed mainly in farms. Unlike apparent losses caused by the high pathogenicity avian influenza (HPAI), the LPAI impact has been hardly evaluated due to underestimating its spread and damage. In 2019, a questionnaire study was conducted in southern Vietnam to identify the specific risk factors of LPAI virus (LPAIV) circulation and to find associations between husbandry activities and LPAI prevalence. A multilevel regression analysis indicated that keeping Muscovy ducks during farming contributed to LPAIV positivity [Odds ratio=208.2 (95% confidence interval: 13.4-1.1 × 104)]. In cluster analysis, farmers willing to report avian influenza (AI) events and who agreed with the local AI control policy had a slightly lower risk for LPAIV infection although there was no significance in the correlation between farmer characteristics and LPAI occurrence. These findings indicated that keeping Muscovy ducks without appropriate countermeasures might increase the risk of LPAIV infection. Furthermore, specific control measures at the local level are effective for LPAIV circulation, and the improvement of knowledge about biosecurity and attitude contributes to reducing LPAI damage.


Assuntos
Vírus da Influenza A , Influenza Aviária , Doenças das Aves Domésticas , Animais , Galinhas , Patos , Fazendas , Influenza Aviária/epidemiologia , Doenças das Aves Domésticas/epidemiologia , Vietnã/epidemiologia , Virulência
7.
Viruses ; 14(6)2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35746734

RESUMO

Avian influenza viruses of the H9 subtype cause significant losses to poultry production in endemic regions of Asia, Africa and the Middle East and pose a risk to human health. The availability of reliable and updated diagnostic tools for H9 surveillance is thus paramount to ensure the prompt identification of this subtype. The genetic variability of H9 represents a challenge for molecular-based diagnostic methods and was the cause for suboptimal detection and false negatives during routine diagnostic monitoring. Starting from a dataset of sequences related to viruses of different origins and clades (Y439, Y280, G1), a bioinformatics workflow was optimized to extract relevant sequence data preparatory for oligonucleotides design. Analytical and diagnostic performances were assessed according to the OIE standards. To facilitate assay deployment, amplification conditions were optimized with different nucleic extraction systems and amplification kits. Performance of the new real-time RT-PCR was also evaluated in comparison to existing H9-detection methods, highlighting a significant improvement of sensitivity and inclusivity, in particular for G1 viruses. Data obtained suggest that the new assay has the potential to be employed under different settings and geographic areas for a sensitive detection of H9 viruses.


Assuntos
Vírus da Influenza A , Influenza Aviária , Animais , Humanos , Vírus da Influenza A/genética , Aves Domésticas , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
Sci Rep ; 10(1): 16817, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033298

RESUMO

Avian Influenza (AI) is a complex but still poorly understood disease; specifically when it comes to reservoirs, co-infections, connectedness and wider landscape perspectives. Low pathogenic (Low-path LP) AI in chickens caused by less virulent strains of AI viruses (AIVs)-when compared with highly pathogenic AIVs (HPAIVs)-are not even well-described yet or known how they contribute to wider AI and immune system issues. Co-circulation of LPAIVs with HPAIVs suggests their interactions in their ecological aspects. Here we show for the Pacific Rim an international approach how to data mine and model-predict LP AI and its ecological niche with machine learning and open access data sets and geographic information systems (GIS) on a 5 km pixel size for best-possible inference. This is based on the best-available data on the issue (~ 40,827 records of lab-analyzed field data from Japan, Russia, Vietnam, Mongolia, Alaska and Influenza Research Database (IRD) and U.S. Department of Agriculture (USDA) database sets, as well as 19 GIS data layers). We sampled 157 hosts and 110 low-path AIVs with 32 species as drivers. The prevalence across low-path AIV subtypes is dominated by Muscovy ducks, Mallards, Whistling Swans and gulls also emphasizing industrial impacts for the human-dominated wildlife contact zone. This investigation sets a good precedent for the study of reservoirs, big data mining, predictions and subsequent outbreaks of HPAI and other pandemics.


Assuntos
Aves/virologia , Mineração de Dados , Reservatórios de Doenças , Influenza Aviária/epidemiologia , Animais , Galinhas/virologia , Mineração de Dados/métodos , Conjuntos de Dados como Assunto , Reservatórios de Doenças/estatística & dados numéricos , Reservatórios de Doenças/virologia , Patos/virologia , Previsões , Influenza Aviária/virologia , Modelos Estatísticos , Orthomyxoviridae/patogenicidade , Oceano Pacífico , Prevalência
9.
Infect Genet Evol ; 78: 104117, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31760087

RESUMO

During the annual surveillance of avian influenza viruses (AIVs) in Vietnam in 2018, three H7N7 AIV isolates were identified in domestic ducks in a single flock in Vinh Long province. The present study is the first documented report of H7N7 virus isolates in Vietnam and aimed to characterize these viruses, both genetically and antigenically. Deduced amino acid sequences for the hemagglutinins (HAs) indicated a low pathogenicity of these viruses in chickens. Phylogenetic analysis revealed that the H7 HA genes of these isolates were closely related to each other and belonged to the European-Asian sublineage, together with those of H7N3 viruses isolated from ducks in Cambodia during 2017. They were not genetically related to those of Chinese H7N9 or H7N1 viruses that were previously detected in Vietnam during 2012. Interestingly, the M genes of the two H7N7 virus isolates were phylogenetically classified into distinct groups, suggesting an ongoing reassortment event in domestic ducks because they were isolated from the same flock. These H7N7 viruses exhibited somewhat different antigenic characteristics compared with other representative H7 low pathogenic AIVs. Surprisingly, the antigenicity of Vietnamese H7N7 viruses is similar to Chinese H7N9 highly pathogenic AIV. The findings of this study suggest that H7N7 viruses may be undergoing reassortment and antigenic diversification in poultry flocks in Vietnam. The silent spread of Vietnamese H7N7 viruses in chickens may lead to acquire high pathogenicity in chickens although the zoonotic potential of the viruses seems to be low since these viruses retain typical avian-specific motifs in the receptor-binding site in the HA and there is no mutation related to mammalian adaptation in PB2 gene. Thus, these results highlight the need for continuous and intensive surveillance of avian influenza in Vietnam, targeting not only highly pathogenic AIVs but also low pathogenic viruses.


Assuntos
Vírus da Influenza A Subtipo H7N7/genética , Vírus da Influenza A Subtipo H7N7/patogenicidade , Influenza Aviária/virologia , Animais , Variação Antigênica , Camboja , Patos/virologia , Fazendas , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A Subtipo H7N3/genética , Vírus da Influenza A Subtipo H7N7/isolamento & purificação , Filogenia , Aves Domésticas/virologia , Doenças das Aves Domésticas/virologia , Vietnã
10.
Prev Vet Med ; 178: 104678, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31113666

RESUMO

The aim of this study was to describe the spatiotemporal distribution of H5 HPAI outbreak reports for the period 2014-2017 and to identify factors associated with H5 HPAI outbreak reports. Throughout the study period, a total of 139 outbreaks of H5 HPAI in poultry were reported, due to either H5N1 (96 outbreaks) or H5N6 (43 outbreaks) subtype viruses. H5N1 HPAI outbreaks occurred in all areas of Vietnam while H5N6 HPAI outbreaks were only reported in the northern and central provinces. We counted the number of H5N1 and H5N6 outbreak report-positive districts per province over the four-year study period and calculated the provincial-level standardized morbidity ratio for H5N1 and H5N6 outbreak reports as the observed number of positive districts divided by the expected number. A mixed-effects, zero-inflated Poisson regression model was developed to identify risk factors for outbreak reports of each H5N1 and H5N6 subtype virus. Spatially correlated and uncorrelated random effects terms were included in this model to identify areas of the country where outbreak reports occurred after known risk factors had been accounted-for. The presence of an outbreak report in a province in the previous 6-12 months increased the provincial level H5N1 outbreak report risk by a factor of 2.42 (95% Bayesian credible interval [CrI] 1.27-4.60) while 1000 bird increases in the density of chickens decreased provincial level H5N6 outbreak report risk by a factor of 0.65 (95% CrI 0.38 to 0.97). We document distinctly different patterns in the spatial and temporal distribution of H5N1 and H5N6 outbreak reports. Most of the variation in H5N1 report risk was accounted-for by the fixed effects included in the zero-inflated Poisson model. In contrast, the amount of unaccounted-for risk in the H5N6 model was substantially greater than the H5N1 model. For H5N6 we recommend that targeted investigations should be carried out in provinces with relatively large spatially correlated random effect terms to identify likely determinants of disease. Similarly, investigations should be carried out in provinces with relatively low spatially correlated random effect terms to identify protective factors for disease and/or reasons for failure to report.


Assuntos
Galinhas , Surtos de Doenças/veterinária , Patos , Gansos , Vírus da Influenza A/fisiologia , Influenza Aviária/epidemiologia , Doenças das Aves Domésticas/epidemiologia , Animais , Virus da Influenza A Subtipo H5N1/fisiologia , Influenza Aviária/virologia , Doenças das Aves Domésticas/virologia , Medição de Risco , Análise Espaço-Temporal , Vietnã/epidemiologia
11.
Sci Rep ; 9(1): 7723, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31118431

RESUMO

This study aimed to elucidate virus, host and environmental dynamics of Vietnamese H5 highly pathogenic avian influenza viruses (HPAIVs) during 2014-2017. Epidemiologically, H5 HPAIVs were frequently detected in apparently healthy domestic and Muscovy ducks and therefore these are preferred species for H5 HPAIV detection in active surveillance. Virologically, clade 2.3.2.1c and 2.3.4.4 H5 HPAIVs were predominant and exhibited distinct phylogeographic evolution. Clade 2.3.2.1c viruses clustered phylogenetically in North, Central and South regions, whilst clade 2.3.4.4 viruses only detected in North and Central regions formed small groups. These viruses underwent diverse reassortment with existence of at least 12 genotypes and retained typical avian-specific motifs. These H5 HPAIVs exhibited large antigenic distance from progenitor viruses and commercial vaccines currently used in poultry. Bayesian phylodynamic analysis inferred that clade 2.3.2.1c viruses detected during 2014-2017 were likely descended from homologous clade viruses imported to Vietnam previously and/or preexisting Chinese viruses during 2012-2013. Vietnamese clade 2.3.4.4 viruses closely shared genetic traits with contemporary foreign spillovers, suggesting that there existed multiple transboundary virus dispersals to Vietnam. This study provides insights into the evolution of Vietnamese H5 HPAIVs and highlights the necessity of strengthening control measures such as, preventive surveillance and poultry vaccination.


Assuntos
Galinhas/virologia , Patos/virologia , Vírus da Influenza A/isolamento & purificação , Influenza Aviária/virologia , Doenças das Aves Domésticas/virologia , Animais , Anticorpos Antivirais/imunologia , Variação Antigênica , Reações Cruzadas , Evolução Molecular , Genes Virais , Variação Genética , Geografia Médica , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A/classificação , Vírus da Influenza A/genética , Vírus da Influenza A/imunologia , Influenza Aviária/epidemiologia , Filogenia , Vigilância da População , Doenças das Aves Domésticas/epidemiologia , Vacinação , Vietnã/epidemiologia
12.
Virology ; 510: 252-261, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28756116

RESUMO

Vaccination-primed immunity in poultry has been suggested for selection of antigenically drifted highly pathogenic avian influenza viruses (HPAIVs). In this study, we performed two consecutive passage studies of an H5N1 HPAIV in vaccinated chickens, namely, study-I and study-II, to select antigenic variants under immune pressure from the vaccination. In study-I, nine consecutive passages of a wild-type H5N1 HPAIV were carried out in chickens vaccinated with the homologous challenge strain. Antigenically drifted variants with mutations at position 179 in the hemagglutinin (HA) were selected after three passages. Similarly, in study-II, a vaccination-mediated antigenic variant isolated in study-I was used as the vaccine and challenge strain to confirm further antigenic drift after updating the vaccine; after the third passage, additional antigenic variants with a mutation at position 256 in the HA were selected. Thus, our study demonstrated the contribution of vaccination in the selection of antigenic variants of H5 HPAIVs in chickens.


Assuntos
Variação Antigênica , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/imunologia , Influenza Aviária/virologia , Animais , Galinhas , Deriva Genética , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Mutação , Seleção Genética , Inoculações Seriadas
14.
Vet Microbiol ; 192: 194-203, 2016 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-27527783

RESUMO

A total of 3,045 environmental samples and oropharyngeal and cloacal swabs from apparently healthy poultry have been collected at three live bird markets (LBMs) at which practices were applied to reduce avian influenza (AI) virus transmission (intervention LBMs) and six conventional LBMs (non-intervention LBMs) in Thua Thien Hue province in 2014 to evaluate the efficacy of the intervention LBMs. The 178 AI viruses, including H3 (19 viruses), H4 (2), H5 (8), H6 (30), H9 (114), and H11 (5), were isolated from domestic ducks, muscovy ducks, chickens, and the environment. The prevalence of AI viruses in intervention LBMs (6.1%; 95% CI: 5.0-7.5) was similar to that in non-intervention LBMs (5.6%; 95% CI: 4.5-6.8; χ(2)=0.532; df=1; P=0.53) in the study area. Eight H5N6 highly pathogenic avian influenza (HPAI) viruses were isolated from apparently healthy ducks, muscovy ducks, and an environmental sample in an intervention LBM. The hemagglutinin genes of the H5N6 HPAI viruses belonged to the genetic clade 2.3.4.4, and the antigenicity of the H5N6 HPAI viruses differed from the H5N1 HPAI viruses previously circulating in Vietnam. Phylogenetic and antigenic analyses of the H6 and H9 viruses isolated in both types of LBMs revealed that they were closely related to the viruses isolated from domestic birds in China, Group II of H6 viruses and Y280 lineage of H9 viruses. These results indicate that the interventions currently applied in LBMs are insufficient to control AI. A risk analysis should be conducted to identify the key factors contributing to AI virus prevalence in intervention LBMs.


Assuntos
Antígenos Virais/genética , Galinhas , Patos , Vírus da Influenza A/classificação , Vírus da Influenza A/genética , Influenza Aviária/virologia , Animais , Vírus da Influenza A/patogenicidade , Influenza Aviária/epidemiologia , Filogenia , Vietnã/epidemiologia
15.
Vet Microbiol ; 182: 108-15, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26711036

RESUMO

Highly pathogenic avian influenza viruses (HPAIVs) have spread in both poultry and wild birds. Determining transmission routes of these viruses during an outbreak is essential for the control of avian influenza. It has been widely postulated that migratory ducks play crucial roles in the widespread dissemination of HPAIVs in poultry by carrying viruses along with their migrations; however close contacts between wild migratory ducks and poultry are less likely in modern industrial poultry farming settings. Therefore, we conducted experimental infections of HPAIVs and low pathogenic avian influenza viruses (LPAIVs) to chickens, domestic ducks, tree sparrows, jungle crows, and black rats to evaluate their roles in virus transmission. The results showed that chickens, ducks, sparrows, and crows were highly susceptible to HPAIV infection. Significant titers of virus were recovered from the sparrows and crows infected with HPAIVs, which suggests that they potentially play roles of transmission of HPAIVs to poultry. In contrast, the growth of LPAIVs was limited in each of the animals tested compared with that of HPAIVs. The present results indicate that these common synanthropes play some roles in influenza virus transmission from wild birds to poultry.


Assuntos
Aves , Reservatórios de Doenças/veterinária , Vírus da Influenza A/patogenicidade , Influenza Aviária/virologia , Infecções por Orthomyxoviridae/veterinária , Animais , Animais Selvagens , Vírus da Influenza A/classificação , Influenza Aviária/mortalidade , Infecções por Orthomyxoviridae/virologia , Ratos , Virulência
16.
Vaccine ; 32(28): 3473-9, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24793949

RESUMO

H7N9 influenza virus infection in humans was reported in China on March 31, 2013. Humans are immunologically naïve to the H7N9 subtype, for which the seasonal influenza vaccine is not effective. Thus, the development of an H7N9 influenza virus vaccine is an urgent issue. To prepare for the emergence of an influenza pandemic, we have established a library comprising more than 1300 influenza virus strains with 144 different combinations of 16 HA and 9 NA subtypes. An H7N9 virus strain isolated from a 35-year-old woman, A/Anhui/1/2013 (H7N9), was found to be antigenically similar to H7N9 influenza viruses isolated from migratory ducks. In the present study, the potency of an inactivated whole virus particle vaccine prepared from an H7N9 low pathogenic avian influenza virus, A/duck/Mongolia/119/2008 (H7N9), selected from the library, was assessed by a challenge with A/Anhui/1/2013 (H7N9). The results indicate that the test vaccine was potent enough to induce sufficient immunity to reduce the impact of disease caused by the challenge with A/Anhui/1/2013 (H7N9) in mice. The present results indicate that an inactivated whole virus particle vaccine prepared from an influenza virus strain stored in the library could be useful as a vaccine strain in case of an influenza pandemic.


Assuntos
Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Animais , Antígenos Virais/imunologia , Reações Cruzadas , Feminino , Subtipo H7N9 do Vírus da Influenza A/genética , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização , Filogenia , RNA Viral/genética , Vacinas de Produtos Inativados/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA