Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Planta ; 257(3): 48, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36740622

RESUMO

MAIN CONCLUSION: The decreased capacity of auxin-, CTK-, and BR-mediated cell division and cell enlargement pathways, combined with the enhanced capacity of GA and ETH-, JA-, ABA-, SA-mediated stress-resistant pathways were presumed to be the crucial reasons for the formation of spur-type 'Red Delicious' mutants. Vallee Spur', which exhibit short internodes and compact tree shape, is the fourth generation of the spur-type bud sport mutant of 'Red Delicious'. However, the underlying molecular mechanism of these properties remains unclear. Here, comparative phenotypic, full-length transcriptome and phytohormone analyses were performed between 'Red Delicious' (NSP) and 'Vallee Spur' (SP). The new shoot internode length of NSP was ˃ 1.53-fold higher than that of the SP mutant. Cytological analysis showed that the stem cells of the SP mutant were smaller and more tightly arranged relative to the NSP. By Iso-Seq, a total of 1426 differentially expressed genes (DEGs) were detected, including 808 upregulated and 618 downregulated genes in new shoot apex with 2 leaves of the SP mutant. Gene expressions involved in auxin, cytokinin (CTK), and brassinosteroid (BR) signal transduction were mostly downregulated in the SP mutant, whereas those involved in gibberellin (GA), ethylene (ETH), jasmonate (JA), ABA, and salicylic acid (SA) signal transduction were mostly upregulated. The overall thermogram analysis of hormone levels in the shoot apex carrying two leaves detected by LC-MS/MS absolute quantification showed that the levels of IAA-Asp, IAA, iP7G, OPDA, and 6-deoxyCS were significantly upregulated in the SP mutant, while the remaining 28 hormones were significantly downregulated. It is speculated that the decreased capacity of auxin, CTK, and BR-mediated cell division and cell enlargement pathways is crucial for the formation of the SP mutant. GA and stress-resistant pathways of ETH, JA, ABA, and SA also play vital roles in stem elongation. These results highlight the involvement of phytohormones in the formation of stem elongation occurring in 'Red Delicious' spur-type bud sport mutants and provide information for exploring its biological mechanism.


Assuntos
Malus , Malus/genética , Cromatografia Líquida , Espectrometria de Massas em Tandem , Reguladores de Crescimento de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Citocininas/metabolismo , Regulação da Expressão Gênica de Plantas
2.
BMC Plant Biol ; 18(1): 363, 2018 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-30563462

RESUMO

BACKGROUND: Bud sport mutants of apple (Malus domestica Borkh.) trees with a highly blushed colouring pattern are mainly caused by the accumulation of anthocyanins in the fruit skin. Hormones are important factors modulating anthocyanin accumulation. However, a good understanding of the interplay between hormones and anthocyanin synthesis in apples, especially in mutants at the molecular level, remains elusive. Here, physiological and comparative transcriptome approaches were used to reveal the molecular basis of color pigmentation in the skin of 'Red Delicious' (G0) and its mutants, including 'Starking Red' (G1), 'Starkrimson' (G2), 'Campbell Redchief' (G3) and 'Vallee spur' (G4). RESULTS: Pigmentation in the skin gradually proliferated from G0 to G4. The anthocyanin content was higher in the mutants than in 'Red Delicious'. The activation of early phenylpropanoid biosynthesis genes, including ASP3, PAL, 4CL, PER, CHS, CYP98A and F3'H, was more responsible for anthocyanin accumulation in mutants at the color break stage. In addition, IAA and ABA had a positive regulatory effect on the synthesis of anthocyanins, while GA had the reverse effect. The down-regulation of AACT1, HMGS, HMGR, MVK, MVD2, IDI1 and FPPS2 involved in terpenoid biosynthesis influences anthocyanin accumulation by positively regulating transcripts of AUX1 and SAUR that contribute to the synthesis of IAA, GID2 to GA, PP2C and SnRK2 to ABA. Furthermore, MYB and bHLH members, which are highly correlated (r=0.882-0.980) with anthocyanin content, modulated anthocyanin accumulation by regulating the transcription of structural genes, including CHS and F3'H, involved in the flavonoid biosynthesis pathway. CONCLUSIONS: The present comprehensive transcriptome analyses contribute to the understanding of the the relationship between hormones and anthocyanin synthesis as well as the molecular mechanism involved in apple skin pigmentation.


Assuntos
Antocianinas/metabolismo , Frutas/metabolismo , Malus/genética , Malus/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Antocianinas/genética , Flavonoides/genética , Flavonoides/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Mutação , Pigmentação/genética , Reguladores de Crescimento de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Terpenos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Plant Physiol Biochem ; 210: 108543, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554534

RESUMO

Gibberellin A3 (GA3) is often used as a principal growth regulator to increase plant size. Here, we applied Tween-20 (2%)-formulated GA3 (T1:40 mg/L; T2:70 mg/L) by dipping the clusters at the initial expansion phase of 'Red Globe' grape (Vitis vinifera L.) in 2018 and 2019. Tween-20 (2%) was used as a control. The results showed that GA3 significantly increased fruit cell length, cell size, diameter, and volume. The hormone levels of auxin (IAA) and zeatin (ZT) were significantly increased at 2 h (0 d) -1 d after application (DAA0-1) and remained significantly higher at DAA1 until maturity. Conversely, ABA exhibited an opposite trend. The mRNA and non-coding sequencing results yielded 436 differentially expressed mRNA (DE_mRNAs), 79 DE_lncRNAs and 17 DE_miRNAs. These genes are linked to hormone pathways like cysteine and methionine metabolism (ko00270), glutathione metabolism (ko00480) and plant hormone signal transduction (ko04075). GA3 application reduced expression of insensitive dwarf 2 (GID2, VIT_07s0129g01000), small auxin-upregulated RNA (SAUR, VIT_08s0007g03120) and 1-aminocyclopropane-1-carboxylate synthase (ACS, VIT_18s0001g08520), but increased SAUR (VIT_04s0023g00560) expression. These four genes were predicted to be negatively regulated by vvi-miR156, vvi-miR172, vvi-miR396, and vvi-miR159, corresponding to specific lncRNAs. Therefore, miRNAs could affect grape size by regulating key genes GID2, ACS and SAUR. The R2R3 MYB family member VvRAX2 (VIT_08s0007g05030) was upregulated in response to GA3 application. Overexpression of VvRAX2 in tomato transgenic lines increased fruit size in contrast to the wild type. This study provides a basis and genetic resources for elucidating the novel role of ncRNAs in fruit development.


Assuntos
Frutas , Giberelinas , Reguladores de Crescimento de Plantas , Vitis , Vitis/genética , Vitis/metabolismo , Vitis/efeitos dos fármacos , Vitis/crescimento & desenvolvimento , Giberelinas/metabolismo , Giberelinas/farmacologia , Frutas/genética , Frutas/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Tree Physiol ; 41(5): 836-848, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33171489

RESUMO

Heritable DNA methylation is a highly conserved epigenetic mark that is important for many biological processes. In a previous transcriptomic study on the fruit skin pigmentation of apple (Malus domestica Borkh.) cv. 'Red Delicious' (G0) and its four continuous-generation bud sport mutants including 'Starking Red' (G1), 'Starkrimson' (G2), 'Campbell Redchief' (G3) and 'Vallee spur' (G4), we identified MYB transcription factors (TFs) MdLUX and MdPCL-like involved in regulating anthocyanin synthesis. However, how these TFs ultimately determine the fruit skin color traits remains elusive. Here, bioinformatics analysis revealed that MdLUX and MdPCL-like contained a well-conserved motif SH[AL]QKY[RF] in their C-terminal region and were located in the nucleus of onion epidermal cells. Overexpression of MdLUX and MdPCL-like in 'Golden Delicious' fruits, 'Gala' calli and Arabidopsis thaliana promoted the accumulation of anthocyanin, whereas MdLUX and MdPCL-like suppression inhibited anthocyanin accumulation in 'Red Fuji' apple fruit skin. Yeast one-hybrid assays revealed that MdLUX and MdPCL-like may bind to the promoter region of the anthocyanin biosynthesis gene MdF3H. Dual-luciferase assays indicated that MdLUX and MdPCL-like activated MdF3H. The whole-genome DNA methylation study revealed that the methylation levels of the mCG context at the upstream (i.e., promoter region) of MdLUX and MdPCL-like were inversely correlated with their mRNA levels and anthocyanin accumulation. Hence, the data suggest that MYB_SH[AL]QKY[RF] TFs MdLUX and MdPCL-like promote anthocyanin biosynthesis in apple fruit skins through the DNA hypomethylation of their promoter regions and the activation of the structural flavonoid gene MdF3H.


Assuntos
Malus , Antocianinas/metabolismo , Metilação de DNA , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Malus/genética , Malus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA