Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Pharmacol Exp Ther ; 339(2): 438-50, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21841040

RESUMO

We examined whether sex differences in κ-opioid receptor (KOPR) pharmacology exist in guinea pigs, which are more similar to humans in the expression level and distribution of KOPR in the brain than rats and mice. The KOPR agonist trans-(±)-3,4-dichloro-N-methyl-N-(2-[1-pyrrolidinyl]-cyclohexyl)benzeneacetamide methanesulfonate (U50,488H) produced a dose-dependent increase in abnormal postures and immobility with more effects in males than females. Males also showed more U50,488H-induced antinociception in the paw pressure test than females. Pretreatment with the KOPR antagonist norbinaltorphimine blocked U50,488H-induced abnormal body postures and antinociception. In contrast, inhibition of cocaine-induced hyperambulation by U50,488H was more effective in females than males. Thus, sex differences in the effects of U50,488H are endpoint-dependent. We then examined whether sex differences in KOPR levels and KOPR-mediated G protein activation in brain regions may contribute to the observed differences using quantitative in vitro autoradiography of [(3)H](5a,7a,8b)-(-)-N-methyl-N-(7-(1-pyrrolidinyl)1-oxaspiro(4,5)dec-8-yl)benzeacetamide ([(3)H]U69,593) binding to the KOPR and U50,488H-stimulated guanosine 5'-O-(3-[(35)S]thiotriphosphate ([(35)S]GTPγS) binding. Compared with females, males exhibited more [(3)H]U69,593 binding in the deep layers of somatosensory and insular cortices, claustrum, endopiriform nucleus, periaqueductal gray, and substantial nigra. Concomitantly, U50,488H-stimulated [(35)S]GTPγS binding was greater in males than females in the superficial and deep layers of somatosensory and insular cortices, caudate putamen, claustrum, medial geniculate nucleus, and cerebellum. In contrast, compared with males, females showed more U50,488H-stimulated [(35)S]GTPγS binding in the dentate gyrus and a trend of higher [(35)S]GTPγS binding in the hypothalamus. These data demonstrate that males and females differ in KOPR expression and KOPR-mediated G protein activation in distinct brain regions, which may contribute to the observed sex differences in KOPR-mediated pharmacology.


Assuntos
(trans)-Isômero de 3,4-dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclo-hexil)-benzenoacetamida/farmacologia , Analgésicos não Narcóticos/farmacologia , Analgésicos/farmacologia , Encéfalo/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Atividade Motora/efeitos dos fármacos , Receptores Opioides kappa/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Cocaína/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Feminino , Guanosina 5'-O-(3-Tiotrifosfato)/antagonistas & inibidores , Cobaias , Masculino , Camundongos , Movimento/efeitos dos fármacos , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Postura , Ratos , Receptores Opioides kappa/agonistas , Receptores Opioides kappa/antagonistas & inibidores , Caracteres Sexuais
2.
Mol Autism ; 6: 69, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26719787

RESUMO

BACKGROUND: Findings of auditory abnormalities in children with autism spectrum disorder (ASD) include delayed superior temporal gyrus auditory responses, pre- and post-stimulus superior temporal gyrus (STG) auditory oscillatory abnormalities, and atypical hemispheric lateralization. These abnormalities are likely associated with abnormal brain maturation. To better understand changes in brain activity as a function of age, the present study investigated associations between age and STG auditory time-domain and time-frequency neural activity. METHODS: While 306-channel magnetoencephalography (MEG) data were recorded, 500- and 1000-Hz tones of 300-ms duration were binaurally presented. Evaluable data were obtained from 63 typically developing children (TDC) (6 to 14 years old) and 52 children with ASD (6 to 14 years old). T1-weighted structural MRI was obtained, and a source model created using single dipoles anatomically constrained to each participant's left and right STG. Using this source model, left and right 50-ms (M50), 100-ms (M100), and 200-ms (M200) time-domain and time-frequency measures (total power (TP) and inter-trial coherence (ITC)) were obtained. RESULTS: Paired t tests showed a right STG M100 latency delay in ASD versus TDC (significant for right 500 Hz and marginally significant for right 1000 Hz). In the left and right STG, time-frequency analyses showed a greater pre- to post-stimulus increase in 4- to 16-Hz TP for both tones in ASD versus TDC after 150 ms. In the right STG, greater post-stimulus 4- to 16-Hz ITC for both tones was observed in TDC versus ASD after 200 ms. Analyses of age effects suggested M200 group differences that were due to a maturational delay in ASD, with left and right M200 decreasing with age in TDC but significantly less so in ASD. Additional evidence indicating delayed maturation of auditory cortex in ASD included atypical hemispheric functional asymmetries, including a right versus left M100 latency advantage in TDC but not ASD, and a stronger left than right M50 response in TDC but not ASD. CONCLUSIONS: Present findings indicated maturational abnormalities in the development of primary/secondary auditory areas in children with ASD. It is hypothesized that a longitudinal investigation of the maturation of auditory network activity will indicate delayed development of each component of the auditory processing system in ASD.

3.
Neuroimage Clin ; 9: 50-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26413471

RESUMO

Copy number variations at chromosome 16p11.2 contribute to neurodevelopmental disorders, including autism spectrum disorder (ASD). This study seeks to improve our understanding of the biological basis of behavioral phenotypes common in ASD, in particular the prominent and prevalent disruption of spoken language seen in children with the 16p11.2 BP4-BP5 deletion. We examined the auditory and language white matter pathways with diffusion MRI in a cohort of 36 pediatric deletion carriers and 45 age-matched controls. Diffusion MR tractography of the auditory radiations and the arcuate fasciculus was performed to generate tract specific measures of white matter microstructure. In both tracts, deletion carriers exhibited significantly higher diffusivity than that of controls. Cross-sectional diffusion parameters in these tracts changed with age with no group difference in the rate of maturation. Within deletion carriers, the left-hemisphere arcuate fasciculus mean and radial diffusivities were significantly negatively correlated with clinical language ability, but not non-verbal cognitive ability. Diffusion metrics in the right-hemisphere arcuate fasciculus were not predictive of language ability. These results provide insight into the link between the 16p11.2 deletion, abnormal auditory and language pathway structures, and the specific behavioral deficits that may contribute to neurodevelopmental disorders such as ASD.


Assuntos
Vias Auditivas/patologia , Transtorno Autístico/patologia , Transtornos Cromossômicos/patologia , Deficiência Intelectual/patologia , Idioma , Adolescente , Encéfalo/patologia , Criança , Deleção Cromossômica , Cromossomos Humanos Par 16 , Imagem de Difusão por Ressonância Magnética , Feminino , Humanos , Masculino , Substância Branca/patologia
4.
Front Hum Neurosci ; 8: 99, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24624069

RESUMO

BACKGROUND: A major motivation in designing the new infant and child magnetoencephalography (MEG) system described in this manuscript is the premise that electrophysiological signatures (resting activity and evoked responses) may serve as biomarkers of neurodevelopmental disorders, with neuronal abnormalities in conditions such as autism spectrum disorder (ASD) potentially detectable early in development. Whole-head MEG systems are generally optimized/sized for adults. Since magnetic field produced by neuronal currents decreases as a function of distance(2) and infants and young children have smaller head sizes (and thus increased brain-to-sensor distance), whole-head adult MEG systems do not provide optimal signal-to-noise in younger individuals. This spurred development of a whole-head infant and young child MEG system - Artemis 123. METHODS: In addition to describing the design of the Artemis 123, the focus of this manuscript is the use of Artemis 123 to obtain auditory evoked neuromagnetic recordings and resting-state data in young children. Data were collected from a 14-month-old female, an 18-month-old female, and a 48-month-old male. Phantom data are also provided to show localization accuracy. RESULTS: Examination of Artemis 123 auditory data showed generalizability and reproducibility, with auditory responses observed in all participants. The auditory MEG measures were also found to be manipulable, exhibiting sensitivity to tone frequency. Furthermore, there appeared to be a predictable sensitivity of evoked components to development, with latencies decreasing with age. Examination of resting-state data showed characteristic oscillatory activity. Finally, phantom data showed that dipole sources could be localized with an error less than 0.5 cm. CONCLUSIONS: Artemis 123 allows efficient recording of high-quality whole-head MEG in infants four years and younger. Future work will involve examining the feasibility of obtaining somatosensory and visual recordings in similar-age children as well as obtaining recordings from younger infants. Thus, the Artemis 123 offers the promise of detecting earlier diagnostic signatures in such neurodevelopmental disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA