Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomed Opt Express ; 12(2): 722-736, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33680538

RESUMO

Optical coherence tomography angiography (OCTA) can provide rapid, volumetric, and noninvasive imaging of tissue microvasculature without the requirement of exogenous contrast agents. To investigate how A-scan rate and interscan time affected the contrast and dynamic range of OCTA, we developed a 1.06-µm swept-source OCT system enabling 100-kHz or 200-kHz OCT using two light sources. After system settings were carefully adjusted, almost the same detection sensitivity was achieved between the 100-kHz and 200-kHz modalities. OCTA of ear skin was performed on five mice. We used the variable interscan time analysis algorithm (VISTA) and the designated scanning protocol with OCTA images reconstructed through the correlation mapping method. With a relatively long interscan time (e.g., 12.5 ms vs. 6.25 ms for 200-kHz OCT), OCTA can identify more intricate microvascular networks. OCTA image sets with the same interscan time (e.g., 12.5 ms) were compared. OCTA images acquired with a 100-kHz A-scan rate showed finer microvasculature than did other imaging modalities. We performed quantitative analysis on the contrast from OCTA images reconstructed with different A-scan rates and interscan time intervals in terms of vessel area, total vessel length, and junction density.

2.
Biomed Opt Express ; 12(4): 2339-2352, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33996233

RESUMO

Currently, the cochlear implantation procedure mainly relies on using a hand lens or surgical microscope, where the success rate and surgery time strongly depend on the surgeon's experience. Therefore, a real-time image guidance tool may facilitate the implantation procedure. In this study, we performed a systematic and quantitative analysis on the optical characterization of ex vivo mouse cochlear samples using two swept-source optical coherence tomography (OCT) systems operating at the 1.06-µm and 1.3-µm wavelengths. The analysis results demonstrated that the 1.06-µm OCT imaging system performed better than the 1.3-µm OCT imaging system in terms of the image contrast between the cochlear conduits and the neighboring cochlear bony wall structure. However, the 1.3-µm OCT imaging system allowed for greater imaging depth of the cochlear samples because of decreased tissue scattering. In addition, we have investigated the feasibility of identifying the electrode of the cochlear implant within the ex vivo cochlear sample with the 1.06-µm OCT imaging. The study results demonstrated the potential of developing an image guidance tool for the cochlea implantation procedure as well as other otorhinolaryngology applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA