Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biosci Biotechnol Biochem ; 80(11): 2231-2240, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27427953

RESUMO

cDNA of Aureobasidium melanogenum lipase comprises 1254 bp encoding 417 amino acids, whereas genomic DNA of lipase comprises 1311 bp with one intron (57 bp). The lipase gene contains a putative signal peptide encoding 26 amino acids. The A. melanogenum lipase gene was successfully expressed in Pichia pastoris. Recombinant lipase in an inducible expression system showed the highest lipase activity of 3.8 U/mL after six days of 2% v/v methanol induction. The molecular mass of purified recombinant lipase was estimated as 39 kDa using SDS-PAGE. Optimal lipase activity was observed at 35-37 °C and pH 7.0 using p-nitrophenyl laurate as the substrate. Lipase activity was enhanced by Mg2+, Mn2+, Li+, Ca2+, Ni2+, CHAPS, DTT, and EDTA and inhibited by Hg2+, Ag+, SDS, Tween 20, and Triton X-100. The addition of 10% v/v acetone, DMSO, p-xylene, and octanol increased lipase activity, whereas that of propanol and butanol strongly inhibited it.

2.
World J Microbiol Biotechnol ; 27(4): 999-1003, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21475726

RESUMO

The genetic heterogeneity of the nitrite reductase gene (nirK and nirS) fragments from denitrifying prokaryotes in a non-agricultural forest soil in Thailand was investigated using soil samples from the Plant Germplasm-Royal Initiation Project area in Kanchanaburi Province, Thailand. Soil bacteria were screened for denitrification activity and 13 (from 211) positive isolates were obtained and further evaluated for their ability to reduce nitrate and to accumulate or reduce nitrite. Three species with potentially previously unreported denitrifying activities were recorded. Analysis of the partial nirK and nirS sequences of these 13 strains revealed a diverse sequence heterogeneity in these two genes within the same environment and even potentially within the same host species, the potential existence of lateral gene transfer and the first record of both nirK and nirS homologues in one bacterial species. Finally, isolates of two species of bacteria (Corynebacterium propinquum and Micrococcus lylae) are recorded as denitrifiers for the first time.

3.
FEMS Microbiol Lett ; 262(1): 99-106, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16907745

RESUMO

Benzo(a)pyrene (BaP) is a five-ring polycyclic aromatic hydrocarbon produced by the incomplete combustion of organic materials. It is one of the priority pollutants listed by the US Environmental Protection Agency. This study describes a fungal isolate that is able to biodegrade benzo(a)pyrene. The filamentous fungus, isolated from leaves of Pterocarpus macrocarpus Kurz., was identified as a Fusarium sp. (strain E033). Fusarium sp. E033 was able to survive in the presence of benzo(a)pyrene concentrations up to 1.2 mM (300 mg L(-1)). Biodegradation experiments using 0.4 mM (100 mg L(-1)) benzo(a)pyrene demonstrated that Fusarium sp. E033 was able to degrade 65-70% of the initial benzo(a)pyrene provided, and two transformation products, a dihydroxy dihydro-benzo(a)pyrene and a benzo(a)pyrene-quinone, were detected within 30 days of incubation at 32 degrees C. The factors affecting biodegradation efficiency were also investigated. While increasing aeration promoted better fungal growth and benzo(a)pyrene biodegradation, increasing the glucose concentration from 5 to 50 mM had an adverse effect on biodegradation. Ethanol and methanol, provided at 5 mM to increase benzo(a)pyrene water solubility, increased the fungal biomass yield but did not promote degradation. The Fusarium sp. E033 isolated in this study can tolerate and degrade relatively high concentrations of benzo(a)pyrene, suggesting its potential application in benzo(a)pyrene bioremediation.


Assuntos
Benzo(a)pireno/metabolismo , Fusarium/metabolismo , Biodegradação Ambiental , Biomassa , Etanol/metabolismo , Fusarium/classificação , Fusarium/isolamento & purificação , Fusarium/ultraestrutura , Glucose/metabolismo , Espectrometria de Massas , Metanol/metabolismo , Microscopia Eletrônica de Varredura , Folhas de Planta/microbiologia , Pterocarpus/microbiologia , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA