Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nature ; 577(7790): 359-363, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31942056

RESUMO

The impact of topological defects associated with grain boundaries (GB defects) on the electrical, optical, magnetic, mechanical and chemical properties of nanocrystalline materials1,2 is well known. However, elucidating this influence experimentally is difficult because grains typically exhibit a large range of sizes, shapes and random relative orientations3-5. Here we demonstrate that precise control of the heteroepitaxy of colloidal polyhedral nanocrystals enables ordered grain growth and can thereby produce material samples with uniform GB defects. We illustrate our approach with a multigrain nanocrystal comprising a Co3O4 nanocube core that carries a Mn3O4 shell on each facet. The individual shells are symmetry-related interconnected grains6, and the large geometric misfit between adjacent tetragonal Mn3O4 grains results in tilt boundaries at the sharp edges of the Co3O4 nanocube core that join via disclinations. We identify four design principles that govern the production of these highly ordered multigrain nanostructures. First, the shape of the substrate nanocrystal must guide the crystallographic orientation of the overgrowth phase7. Second, the size of the substrate must be smaller than the characteristic distance between the dislocations. Third, the incompatible symmetry between the overgrowth phase and the substrate increases the geometric misfit strain between the grains. Fourth, for GB formation under near-equilibrium conditions, the surface energy of the shell needs to be balanced by the increasing elastic energy through ligand passivation8-10. With these principles, we can produce a range of multigrain nanocrystals containing distinct GB defects.

2.
J Am Chem Soc ; 145(31): 16951-16965, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37439128

RESUMO

Hydrogen has been chosen as an environmentally benign energy source to replace fossil-fuel-based energy systems. Since hydrogen is difficult to store and transport in its gaseous phase, thermochemical liquid organic hydrogen carriers (LOHCs) have been developed as one of the alternative technologies. However, the high temperature and pressure requirements of thermochemical LOHC systems result in huge energy waste and impracticality. This Perspective proposes electrochemical (EC)-LOHCs capable of more efficient, safer, and lower temperature and pressure hydrogen storage/utilization. To enable this technology, several EC-LOHC candidates such as isopropanol, phenolic compounds, and organic acids are described, and the latest research trends and design concepts of related homo/hetero-based electrocatalysts are discussed. In addition, we propose efficient fuel-cell-based systems that implement electrochemical (de)hydrogenation of EC-LOHCs and present prospects for relevant technologies.

3.
Acc Chem Res ; 55(9): 1278-1289, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35436084

RESUMO

Electrocatalysis is a key process for renewable energy conversion and fuel production in future energy systems. Various nanostructures have been investigated to optimize the electrocatalytic activity and realize efficient energy use. However, the long-term stability of electrocatalysts is also crucial for the sustainable and reliable operation of energy devices. Nanocatalysts are degraded by various processes during electrocatalysis, which causes critical performance loss. Recent operando analyses have revealed the mechanisms of electrocatalyst failure, and specific structures have been identified as robust against degradation. Nevertheless, achieving both high activity and robust stability with the same nanostructure is challenging because the structure-property relationships that affect activity and stability are different. The optimization of electrocatalysis is often limited by a large trade-off between activity and stability in catalyst structures. Therefore, it is essential to introduce functional structural units into catalyst design to achieve electrochemical stability while preserving high activity.In this Account, we highlight the strategic use of carbon shells on catalyst surfaces to improve the stability during electrocatalysis. For this purpose, we cover three issues in the use of carbon-shell-encapsulated nanoparticles (CSENPs) as robust and active electrocatalysts: the origin of the improved stability, the identification of active sites, and synthetic routes. Carbon shells can shield catalyst surfaces from both (electro)chemical oxidation and physical agglomeration. By limiting the exposure of the catalyst surface to an oxidizing (electro)chemical environment, carbon shells can preserve the initial active site structure during electrocatalysis. In addition, by providing a physical barrier between nanoparticles, carbon shells can maintain the high surface area of CSENPs by reducing particle agglomeration during electrocatalysis. This barrier effect is also useful for constructing more active or durable structures by annealing without surface area loss. Compared to the clear stabilizing effect, however, the effect of the shell on active sites on the CSENP surface can be puzzling. Even when they are covered by a carbon shell that can block molecular adsorption on active sites, CSENP catalysts remain active and even exhibit unique catalytic behavior. Thus, we briefly cover recent efforts to identify major active sites on CSENPs using molecular probes. Furthermore, considering the membranelike role of the carbon shell, we suggest several remaining issues that should be resolved to obtain a fundamental understanding of CSENP design. Finally, we describe two synthetic approaches for the successful carbon shell encapsulation of nanoparticles: two-step and one-step syntheses. Both the postmortem coating of nanocatalysts (two-step) and the in situ formation via precursor ligands (one step) are shown to produce a durable carbon layer on nanocatalysts in a controlled manner. The strengths and limitations of each approach are also presented to promote the further investigation of advanced synthesis methods.The hybrid structure of CSENPs, that is, the active catalyst surface and the durable carbon shell, provides an interesting opportunity in electrocatalysis. However, our understanding of CSENPs is still highly limited, and further investigation is needed to answer fundamental questions regarding both active site identification and the mechanisms of stability improvement. Only when we start to comprehend the fundamental mechanisms underlying electrocatalysis on CSENPs will electrocatalysts be further improved for sustainable long-term device operation.


Assuntos
Carbono , Nanoestruturas , Adsorção , Catálise , Oxirredução
4.
J Am Chem Soc ; 143(7): 2741-2750, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33399469

RESUMO

Perovskite oxides are an important class of oxygen evolution reaction (OER) catalysts in alkaline media, despite the elusive nature of their active sites. Here, we demonstrate that the origin of the OER activity in a La1-xSrxCoO3 model perovskite arises from a thin surface layer of Co hydr(oxy)oxide (CoOxHy) that interacts with trace-level Fe species present in the electrolyte, creating dynamically stable active sites. Generation of the hydr(oxy)oxide layer is a consequence of a surface evolution process driven by the A-site dissolution and O-vacancy creation. In turn, this imparts a 10-fold improvement in stability against Co dissolution and a 3-fold increase in the activity-stability factor for CoOxHy/LSCO when compared to nanoscale Co-hydr(oxy)oxides clusters. Our results suggest new design rules for active and stable perovskite oxide-based OER materials.

5.
J Am Chem Soc ; 141(5): 2035-2045, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30620877

RESUMO

The effect of porous structures on the electrocatalytic activity of N-doped carbon is studied by using electrochemical analysis techniques and the result is applied to synthesize highly active and stable Fe-N-C catalyst for oxygen reduction reaction (ORR). We developed synthetic procedures to prepare three types of N-doped carbon model catalysts that are designed for systematic comparison of the porous structures. The difference in their catalytic activity is investigated in relation to the surface area and the electrochemical parameters. We found that macro- and mesoporous structures contribute to different stages of the reaction kinetics. The catalytic activity is further enhanced by loading the optimized amount of Fe to prepare Fe-N-C catalyst. In both N-doped carbon and Fe-N-C catalysts, the hierarchical porous structure improved electrocatalytic performance in acidic and alkaline media. The optimized catalyst exhibits one of the best ORR performance in alkaline medium with excellent long-term stability in anion exchange membrane fuel cell and accelerated durability test. Our study establishes a basis for rationale design of the porous carbon structure for electrocatalytic applications.

6.
Small ; 14(36): e1802191, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30095220

RESUMO

Transition metal dichalcogenides, especially MoS2 , are considered as promising electrocatalysts for hydrogen evolution reaction (HER). Since the physicochemical properties of MoS2 and electrode morphology are highly sensitive factor for HER performance, designed synthesis is highly pursued. Here, an in situ method to prepare a 3D carbon/MoS2 hybrid catalyst, motivated by the graphene ribbon synthesis process, is reported. By rational design strategies, the hybrid electrocatalysts with cross-connected porous structure are obtained, and they show a high HER activity even comparable to the state-of-the-art MoS2 catalyst without appreciable activity loss in long-term operations. Based on various physicochemical techniques, it is demonstrated that the synthetic procedure can effectively guide the formation of active site and 3D structure with a distinctive feature; increased exposure of active sites by decreased domain size and intrinsically high activity through controlling the number of stacking layers. Moreover, the importance of structural properties of the MoS2 -based catalysts is verified by controlled experiments, validating the effectiveness of the designed synthesis approach.

7.
J Am Chem Soc ; 139(19): 6669-6674, 2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28437070

RESUMO

A highly active and stable non-Pt electrocatalyst for hydrogen production has been pursued for a long time as an inexpensive alternative to Pt-based catalysts. Herein, we report a simple and effective approach to prepare high-performance iron phosphide (FeP) nanoparticle electrocatalysts using iron oxide nanoparticles as a precursor. A single-step heating procedure of polydopamine-coated iron oxide nanoparticles leads to both carbonization of polydopamine coating to the carbon shell and phosphidation of iron oxide to FeP, simultaneously. Carbon-shell-coated FeP nanoparticles show a low overpotential of 71 mV at 10 mA cm-2, which is comparable to that of a commercial Pt catalyst, and remarkable long-term durability under acidic conditions for up to 10 000 cycles with negligible activity loss. The effect of carbon shell protection was investigated both theoretically and experimentally. A density functional theory reveals that deterioration of catalytic activity of FeP is caused by surface oxidation. Extended X-ray absorption fine structure analysis combined with electrochemical test shows that carbon shell coating prevents FeP nanoparticles from oxidation, making them highly stable under hydrogen evolution reaction operation conditions. Furthermore, we demonstrate that our synthetic method is suitable for mass production, which is highly desirable for large-scale hydrogen production.

8.
J Craniofac Surg ; 27(2): e148-50, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26967099

RESUMO

Schwannomas are tumors that arise from Schwann cells. Although schwannomas can occur almost anywhere in the body where nerve cells are present, they rarely occur in the head and neck region, including the oral and maxillofacial region. Cystic changes in schwannomas are extremely rare. This report is on a case of schwannoma with cystic changes that occurred in the pterygomandibular space.A 46-year-old woman presented with a complaint of limited mouth opening and pain on the left side of the mandible for 3 months. On panoramic radiography, radiolucency was seen on the left mandibular ramus. On enhanced computed tomography, a 4 × 3 cm cystic mass was found along the inner side of the left mandibular ramus area. Magnetic resonance imaging showed a multiseptated, well-demarcated cystic lesion on the inner side of the mandibular ramus on the left side. Under general anesthesia, the tumor was excised. The final diagnosis was schwannoma with cystic changes. Lower lip hypoesthesia occurred postoperatively. At the 1-year postoperative follow-up, maximum mouth opening was increased to 44 mm, and lip hypoesthesia was improved.


Assuntos
Neoplasias Mandibulares/diagnóstico por imagem , Neurilemoma/diagnóstico por imagem , Feminino , Seguimentos , Humanos , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Músculos Pterigoides/diagnóstico por imagem , Radiografia Panorâmica/métodos , Tomografia Computadorizada por Raios X/métodos
10.
J Am Chem Soc ; 137(49): 15478-85, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26670103

RESUMO

Demand on the practical synthetic approach to the high performance electrocatalyst is rapidly increasing for fuel cell commercialization. Here we present a synthesis of highly durable and active intermetallic ordered face-centered tetragonal (fct)-PtFe nanoparticles (NPs) coated with a "dual purpose" N-doped carbon shell. Ordered fct-PtFe NPs with the size of only a few nanometers are obtained by thermal annealing of polydopamine-coated PtFe NPs, and the N-doped carbon shell that is in situ formed from dopamine coating could effectively prevent the coalescence of NPs. This carbon shell also protects the NPs from detachment and agglomeration as well as dissolution throughout the harsh fuel cell operating conditions. By controlling the thickness of the shell below 1 nm, we achieved excellent protection of the NPs as well as high catalytic activity, as the thin carbon shell is highly permeable for the reactant molecules. Our ordered fct-PtFe/C nanocatalyst coated with an N-doped carbon shell shows 11.4 times-higher mass activity and 10.5 times-higher specific activity than commercial Pt/C catalyst. Moreover, we accomplished the long-term stability in membrane electrode assembly (MEA) for 100 h without significant activity loss. From in situ XANES, EDS, and first-principles calculations, we confirmed that an ordered fct-PtFe structure is critical for the long-term stability of our nanocatalyst. This strategy utilizing an N-doped carbon shell for obtaining a small ordered-fct PtFe nanocatalyst as well as protecting the catalyst during fuel cell cycling is expected to open a new simple and effective route for the commercialization of fuel cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA