RESUMO
We present a method to generate sub-microsecond quasi-unipolar pressure pulses. Our approach is based on the laser irradiation of a thin copper wire submerged in water. The acoustic waveforms were recorded using two different, well characterized, wideband detection techniques: piezoelectric and optical interferometry. The results show that the irradiated target behaves as an omnidirectional source. Moreover, the peak pulse pressure linearly depends on the laser fluence and the source size. From the results, we propose an empirical equation for the spatial and temporal profile of the pressure pulse. The method has several advantages: ease of implementation, high repeatability, wide ultrasonic bandwidth and quasi-unipolar time profile. These features lead to potential applications of this acoustic source in ultrasonic characterization such as transducer systems, materials or passive devices.
RESUMO
In this work, we present a three-dimensional model for the design of wideband piezoelectric polymer sensors which includes the geometry and the properties of the transducer materials. The model uses FFT and numerical integration techniques in an explicit, semi-analytical approach. To validate the model, we made electrical and mechanical measurements on homemade sensors for optoacoustic applications. Each device was implemented using a polyvinylidene fluoride thin film piezoelectric polymer with a thickness of 25 µm. The sensors had detection areas in the range between 0.5 mm2 and 35 mm2 and were excited by acoustic pressure pulses of 5 ns (FWHM) from a source with a diameter around 10 µm. The experimental data obtained from the measurements agree well with the model results. We discuss the relative importance of the sensor design parameters for optoacoustic applications and we provide guidelines for the optimization of devices.