Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Am J Transplant ; 17(7): 1742-1753, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28066981

RESUMO

Several approaches successfully achieve allograft tolerance in preclinical models but are challenging to translate into clinical practice. Many clinically relevant factors can attenuate allograft tolerance induction, including intrinsic genetic resistance, peritransplant infection, inflammation, and preexisting antidonor immunity. The prevailing view for immune memory as a tolerance barrier is that the host harbors memory cells that spontaneously cross-react to donor MHC antigens. Such preexisting "heterologous" memory cells have direct reactivity to donor cells and resist most tolerance regimens. In this study, we developed a model system to determine if an alternative form of immune memory could also block tolerance. We posited that host memory T cells could potentially respond to donor-derived non-MHC antigens, such as latent viral antigens or autoantigens, to which the host is immune. Results show that immunity to a model nonself antigen, ovalbumin (OVA), can dramatically disrupt tolerance despite undetectable initial reactivity to donor MHC antigens. Importantly, this blockade of tolerance was CD8+ T cell-dependent and required linked antigen presentation of alloantigens with the test OVA antigen. As such, this pathway represents an unapparent, or "incognito," form of immunity that is sufficient to prevent tolerance and that can be an unforeseen additional immune barrier to clinical transplant tolerance.


Assuntos
Apresentação de Antígeno/imunologia , Linfócitos T CD8-Positivos/imunologia , Rejeição de Enxerto/imunologia , Memória Imunológica/imunologia , Transplante das Ilhotas Pancreáticas/métodos , Tolerância ao Transplante/imunologia , Animais , Feminino , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Ovalbumina/administração & dosagem , Transplante Homólogo
2.
mSphere ; 1(4)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27579369

RESUMO

Antibiotics target specific biosynthetic processes essential for bacterial growth. It is intriguing that several commonalities connect the bactericidal activity of seemingly disparate antibiotics, such as the numerous conditions that confer broad-spectrum antibiotic tolerance. Whether antibiotics kill in a manner unique to their specific targets or by a universal mechanism is a critical and contested subject. Herein, we demonstrate that the bactericidal activity of diverse antibiotics against Mycobacterium smegmatis and four evolutionarily divergent bacterial pathogens was blocked by conditions that worked to maintain intracellular pH homeostasis. Single-cell pH analysis demonstrated that antibiotics increased the cytosolic pH of M. smegmatis, while conditions that promoted proton entry into the cytosol prevented intracellular alkalization and antibiotic killing. These findings led to a hypothesis that posits antibiotic lethality occurs when antibiotics obstruct ATP-consuming biosynthetic processes while metabolically driven proton efflux is sustained despite the loss of proton influx via ATP synthase. Consequently, without a concomitant reduction in respiratory proton efflux, cell death occurs due to intracellular alkalization. Our findings indicate the effects of antibiotics on pH homeostasis should be considered a potential mechanism contributing to antibiotic lethality. IMPORTANCE Since the discovery of antibiotics, mortality due to bacterial infection has decreased dramatically. However, infections from difficult to treat bacteria such as Mycobacterium tuberculosis and multidrug-resistant pathogens have been on the rise. An understanding of the cascade of events that leads to cell death downstream of specific drug-target interactions is not well understood. We have discovered that killing by several classes of antibiotics was stopped by maintaining pH balance within the bacterial cell, consistent with a shared mechanism of antibiotic killing. Our findings suggest a mechanism of antibiotic killing that stems from the antibiotic's ability to increase the pH within bacterial cells by disrupting proton entry without affecting proton pumping out of cells. Knowledge of the core mechanism necessary for antibiotic killing could have a significant impact on the development of new lethal antibiotics and for the treatment of recalcitrant and drug-resistant pathogens.

3.
Gen Pharmacol ; 27(2): 239-44, 1996 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-8919636

RESUMO

1. Several previous in vivo studies demonstrated that crosslinked hemoglobin is a potent vasoconstrictor capable of significantly increasing arterial blood pressure following systemic administration. The precise mechanisms underlying the vascular effects of crosslinked hemoglobin are not clear. The present study was designed to determine the effect of crosslinked hemoglobin on the endothelial L-arginine-nitric oxide biosynthesis pathway in isolated canine arteries. 2. Isolated femoral and renal arteries were suspended in organ chambers for isometric tension recordings. Endothelium-dependent relaxations to acetylcholine and calcium ionophore A23187 were studied in the absence or in the presence of crosslinked hemoglobin or hemoglobin. A radioimmunoassay technique was used to determine levels of guanosine 3',5'-cyclic monophosphate (cyclic GMP) and adenosine 3',5'-cyclic monophosphate (cyclic AMP). 3. A nitric oxide synthase inhibitor L-NAME (10(-4)M) selectively inhibited endothelium-dependent relaxations to acetylcholine and calcium ionophore A23187. The inhibitory effect of L-NAME was reversed by L-arginine (3 x 10(-4)M). Crosslinked hemoglobin (10(-7), 10(-6) and 10(-5)M) inhibited endothelium-dependent relaxations to acetylcholine (10(-9)-10(-5)M) or A23187 (10(-9)-10(-6)M). In the same concentration range, purified bovine hemoglobin exerted a similar inhibitory effect on relaxations mediated by activation of endothelial cells. Crosslinked hemoglobin (10(-6)M) significantly reduced basal production of cyclic GMP, but did not affect production of cyclic AMP. Acetylcholine (10(-6)M) stimulated production of cyclic GMP. This effect of acetylcholine was abolished in the presence of crosslinked hemoglobin. 4. These studies demonstrate that crosslinked hemoglobin impairs endothelium-dependent relaxations in isolated large conduit arteries. This effect appears to be mediated by the chemical antagonism of crosslinked hemoglobin against nitric oxide released from the endothelium. Inhibition of the endothelial L-arginine-nitric oxide biosynthesis pathway, with subsequent decrease of cyclic GMP in smooth muscle, may help to explain vasoconstrictor and pressor effects of crosslinked hemoglobin.


Assuntos
Aspirina/análogos & derivados , Substitutos Sanguíneos/farmacologia , Endotélio Vascular/efeitos dos fármacos , Hemoglobinas/farmacologia , Óxido Nítrico/antagonistas & inibidores , Acetilcolina/farmacologia , Animais , Aspirina/farmacologia , Calcimicina/farmacologia , AMP Cíclico/biossíntese , GMP Cíclico/biossíntese , Cães , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Artéria Femoral/efeitos dos fármacos , Técnicas In Vitro , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Artéria Renal/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos
4.
J Virol ; 74(4): 1973-84, 2000 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10644370

RESUMO

Murine gammaherpesvirus 68 (gammaHV68, or MHV-68) is a genetically tractable, small animal model for the analysis of gammaherpesvirus pathogenesis. The gammaHV68 genome is colinear with the genomes of other sequence gammaherpesviruses, containing large blocks of conserved genes interspersed by a number of putative genes without clear homologs in the other gammaherpesviruses. One of these putative unique genes, the M1 open reading frame (ORF), exhibits sequence homology to a poxvirus serine protease inhibitor, SPI-1, as well as to another gammaHV68 gene, M3, which we have recently shown encodes an abundantly secreted chemokine binding protein. To assess the contribution of the M1 ORF to gammaHV68 pathogenesis, we have generated a recombinant gammaHV68 in which the M1 ORF has been disrupted through targeted insertion of a lacZ expression cassette (M1.LacZ). Although M1.LacZ replicated normally in tissue culture, it exhibited decreased splenic titers at days 4 and 9 postinfection in both immunocompetent and immunodeficient mice. Despite decreased levels of acute virus replication, M1.LacZ established a latent infection comparable to wild-type (wt) gammaHV68, but exhibited an approximately fivefold increase in efficiency of reactivation from latency. M1.LacZ also caused severe vasculitis of the great elastic arteries in gamma interferon receptor (IFN-gammaR)-deficient mice with a frequency comparable to wt gammaHV68, but did not cause the mortality or splenic pathology observed with wt gammaHV68 infection of IFN-gammaR-deficient mice. Restoration of M1 ORF sequences into M1.LacZ (M1 marker rescue, or M1.MR) demonstrated that M1.LacZ phenotypic alterations in growth in vivo and latency were not due to the presence of additional mutations located elsewhere in the M1. LacZ genome. Generation of a second M1 mutant virus containing a deletion at the 5' end of the M1 ORF (M1Delta511), but lacking the LacZ expression cassette, revealed the same latency phenotype observed with the M1.LacZ mutant. However, M1Delta511 was not attenuated for acute virus replication in the spleen. We conclude that (i) the induction of arteritis in gammaHV68-infected IFN-gammaR-deficient mice can occur in the absence of splenic pathology and mortality, (ii) replication during acute infection is not the primary determinant for the establishment of latent infection, and (iii) the M1 ORF, or a closely linked gene, encodes a gene product that functions to suppress virus reactivation.


Assuntos
Gammaherpesvirinae/crescimento & desenvolvimento , Fases de Leitura Aberta , Ativação Viral , Animais , Linhagem Celular , Gammaherpesvirinae/genética , Gammaherpesvirinae/patogenicidade , Gammaherpesvirinae/fisiologia , Marcação de Genes , Imunocompetência , Interferon gama/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Baço/virologia , Virulência , Latência Viral , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA