Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 22(23): 6570-6585, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25456383

RESUMO

We report the discovery of a novel series of 2-(3-alkoxy-1-azetidinyl) quinolines as potent and selective PDE10A inhibitors. Structure-activity studies improved the solubility (pH 7.4) and maintained high PDE10A activity compared to initial lead compound 3, with select compounds demonstrating good oral bioavailability. X-ray crystallographic studies revealed two distinct binding modes to the catalytic site of the PDE10A enzyme. An ex vivo receptor occupancy assay in rats demonstrated that this series of compounds covered the target within the striatum.


Assuntos
Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Quinolinas/farmacologia , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Inibidores de Fosfodiesterase/síntese química , Inibidores de Fosfodiesterase/química , Quinolinas/síntese química , Quinolinas/química , Solubilidade , Relação Estrutura-Atividade
2.
Mol Cancer Ther ; : OF1-OF13, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904222

RESUMO

KRAS is the most frequently mutated oncogene in human cancer and facilitates uncontrolled growth through hyperactivation of the receptor tyrosine kinase (RTK)/mitogen-activated protein kinase (MAPK) pathway. The Son of Sevenless homolog 1 (SOS1) protein functions as a guanine nucleotide exchange factor (GEF) for the RAS subfamily of small GTPases and represents a druggable target in the pathway. Using a structure-based drug discovery approach, MRTX0902 was identified as a selective and potent SOS1 inhibitor that disrupts the KRAS:SOS1 protein-protein interaction to prevent SOS1-mediated nucleotide exchange on KRAS and translates into an anti-proliferative effect in cancer cell lines with genetic alterations of the KRAS-MAPK pathway. MRTX0902 augmented the antitumor activity of the KRAS G12C inhibitor adagrasib when dosed in combination in eight out of 12 KRAS G12C-mutant human non-small cell lung cancer and colorectal cancer xenograft models. Pharmacogenomic profiling in preclinical models identified cell cycle genes and the SOS2 homolog as genetic co-dependencies and implicated tumor suppressor genes (NF1 and PTEN) in resistance following combination treatment. Lastly, combined vertical inhibition of RTK/MAPK pathway signaling by MRTX0902 with inhibitors of EGFR or RAF/MEK led to greater downregulation of pathway signaling and improved antitumor responses in KRAS-MAPK pathway-mutant models. These studies demonstrate the potential clinical application of dual inhibition of SOS1 and KRAS G12C and additional SOS1 combination strategies that will aide in the understanding of SOS1 and RTK/MAPK biology in targeted cancer therapy.

4.
J Med Chem ; 61(18): 8186-8201, 2018 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-30148953

RESUMO

Transient-receptor-potential melastatin 8 (TRPM8), the predominant mammalian cold-temperature thermosensor, is a nonselective cation channel expressed in a subpopulation of sensory neurons in the peripheral nervous system, including nerve circuitry implicated in migraine pathogenesis: the trigeminal and pterygopalatine ganglia. Genomewide association studies have identified an association between TRPM8 and reduced risk of migraine. This disclosure focuses on medicinal-chemistry efforts to improve the druglike properties of initial leads, particularly removal of CYP3A4-induction liability and improvement of pharmacokinetic properties. A novel series of biarylmethanamide TRPM8 antagonists was developed, and a subset of leads were evaluated in preclinical toxicology studies to identify a clinical candidate with an acceptable preclinical safety profile leading to clinical candidate AMG 333, a potent and highly selective antagonist of TRPM8 that was evaluated in human clinical trials.


Assuntos
Anticonvulsivantes/farmacologia , Descoberta de Drogas , Transtornos de Enxaqueca/prevenção & controle , Niacina/química , Convulsões/tratamento farmacológico , Canais de Cátion TRPM/antagonistas & inibidores , Animais , Anticonvulsivantes/química , Agonistas dos Canais de Cálcio/toxicidade , Humanos , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Modelos Moleculares , Estrutura Molecular , Pirimidinonas/toxicidade , Ratos , Ratos Sprague-Dawley , Convulsões/induzido quimicamente
5.
J Med Chem ; 57(7): 2989-3004, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24597733

RESUMO

Transient receptor potential melastatin 8 (TRPM8) is a nonselective cation channel expressed in a subpopulation of sensory neurons in the peripheral nervous system. TRPM8 is the predominant mammalian cold temperature thermosensor and is activated by cold temperatures ranging from 8 to 25 °C and cooling compounds such as menthol or icilin. TRPM8 antagonists are being pursued as potential therapeutics for treatment of pain and bladder disorders. This manuscript outlines new developments in the SAR of a lead series of 1,2,3,4-tetrahydroisoquinoline derivatives with emphasis on strategies to improve pharmacokinetic properties and potency. Selected compounds were profiled in two TRPM8 target-specific in vivo coverage models in rats (the icilin-induced wet dog shake model and the cold pressor test). Compound 45 demonstrated robust efficacy in both pharmacodynamic models with ED90 values <3 mg/kg.


Assuntos
Comportamento Animal/efeitos dos fármacos , Microssomos Hepáticos/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Canais de Cátion TRPM/antagonistas & inibidores , Tetra-Hidroisoquinolinas/farmacocinética , Animais , Dicroísmo Circular , Temperatura Baixa , Cães , Humanos , Masculino , Microssomos Hepáticos/metabolismo , Pirimidinonas/farmacologia , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Estereoisomerismo , Canais de Cátion TRPM/metabolismo , Tetra-Hidroisoquinolinas/química , Tetra-Hidroisoquinolinas/farmacologia , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA