RESUMO
Critical illness in COVID-19 is an extreme and clinically homogeneous disease phenotype that we have previously shown1 to be highly efficient for discovery of genetic associations2. Despite the advanced stage of illness at presentation, we have shown that host genetics in patients who are critically ill with COVID-19 can identify immunomodulatory therapies with strong beneficial effects in this group3. Here we analyse 24,202 cases of COVID-19 with critical illness comprising a combination of microarray genotype and whole-genome sequencing data from cases of critical illness in the international GenOMICC (11,440 cases) study, combined with other studies recruiting hospitalized patients with a strong focus on severe and critical disease: ISARIC4C (676 cases) and the SCOURGE consortium (5,934 cases). To put these results in the context of existing work, we conduct a meta-analysis of the new GenOMICC genome-wide association study (GWAS) results with previously published data. We find 49 genome-wide significant associations, of which 16 have not been reported previously. To investigate the therapeutic implications of these findings, we infer the structural consequences of protein-coding variants, and combine our GWAS results with gene expression data using a monocyte transcriptome-wide association study (TWAS) model, as well as gene and protein expression using Mendelian randomization. We identify potentially druggable targets in multiple systems, including inflammatory signalling (JAK1), monocyte-macrophage activation and endothelial permeability (PDE4A), immunometabolism (SLC2A5 and AK5), and host factors required for viral entry and replication (TMPRSS2 and RAB2A).
Assuntos
COVID-19 , Estado Terminal , Predisposição Genética para Doença , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , COVID-19/genética , Predisposição Genética para Doença/genética , Variação Genética/genética , Genótipo , Técnicas de Genotipagem , Monócitos/metabolismo , Fenótipo , Proteínas rab de Ligação ao GTP/genética , Transcriptoma , Sequenciamento Completo do GenomaRESUMO
Obtaining a burning plasma is a critical step towards self-sustaining fusion energy1. A burning plasma is one in which the fusion reactions themselves are the primary source of heating in the plasma, which is necessary to sustain and propagate the burn, enabling high energy gain. After decades of fusion research, here we achieve a burning-plasma state in the laboratory. These experiments were conducted at the US National Ignition Facility, a laser facility delivering up to 1.9 megajoules of energy in pulses with peak powers up to 500 terawatts. We use the lasers to generate X-rays in a radiation cavity to indirectly drive a fuel-containing capsule via the X-ray ablation pressure, which results in the implosion process compressing and heating the fuel via mechanical work. The burning-plasma state was created using a strategy to increase the spatial scale of the capsule2,3 through two different implosion concepts4-7. These experiments show fusion self-heating in excess of the mechanical work injected into the implosions, satisfying several burning-plasma metrics3,8. Additionally, we describe a subset of experiments that appear to have crossed the static self-heating boundary, where fusion heating surpasses the energy losses from radiation and conduction. These results provide an opportunity to study α-particle-dominated plasmas and burning-plasma physics in the laboratory.
RESUMO
Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2-4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes-including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)-in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease.
Assuntos
COVID-19 , Estado Terminal , Genoma Humano , Interações Hospedeiro-Patógeno , Sequenciamento Completo do Genoma , Transportadores de Cassetes de Ligação de ATP , COVID-19/genética , COVID-19/mortalidade , COVID-19/patologia , COVID-19/virologia , Moléculas de Adesão Celular , Cuidados Críticos , Estado Terminal/mortalidade , Selectina E , Fator VIII , Fucosiltransferases , Genoma Humano/genética , Estudo de Associação Genômica Ampla , Interações Hospedeiro-Patógeno/genética , Humanos , Subunidade beta de Receptor de Interleucina-10 , Lectinas Tipo C , Mucina-1 , Proteínas do Tecido Nervoso , Proteínas de Transferência de Fosfolipídeos , Receptores de Superfície Celular , Proteínas Repressoras , SARS-CoV-2/patogenicidade , Galactosídeo 2-alfa-L-FucosiltransferaseRESUMO
Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 × 10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice.
Assuntos
COVID-19/genética , COVID-19/fisiopatologia , Estado Terminal , 2',5'-Oligoadenilato Sintetase/genética , COVID-19/patologia , Cromossomos Humanos Par 12/genética , Cromossomos Humanos Par 19/genética , Cromossomos Humanos Par 21/genética , Cuidados Críticos , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Reposicionamento de Medicamentos , Feminino , Estudo de Associação Genômica Ampla , Humanos , Inflamação/genética , Inflamação/patologia , Inflamação/fisiopatologia , Pulmão/patologia , Pulmão/fisiopatologia , Pulmão/virologia , Masculino , Família Multigênica/genética , Receptor de Interferon alfa e beta/genética , Receptores CCR2/genética , TYK2 Quinase/genética , Reino UnidoRESUMO
BACKGROUND: Hemodynamic instability and myocardial dysfunction are major factors preventing the transplantation of hearts from organ donors after brain death. Intravenous levothyroxine is widely used in donor care, on the basis of observational data suggesting that more organs may be transplanted from donors who receive hormonal supplementation. METHODS: In this trial involving 15 organ-procurement organizations in the United States, we randomly assigned hemodynamically unstable potential heart donors within 24 hours after declaration of death according to neurologic criteria to open-label infusion of intravenous levothyroxine (30 µg per hour for a minimum of 12 hours) or saline placebo. The primary outcome was transplantation of the donor heart; graft survival at 30 days after transplantation was a prespecified recipient safety outcome. Secondary outcomes included weaning from vasopressor therapy, donor ejection fraction, and number of organs transplanted per donor. RESULTS: Of the 852 brain-dead donors who underwent randomization, 838 were included in the primary analysis: 419 in the levothyroxine group and 419 in the saline group. Hearts were transplanted from 230 donors (54.9%) in the levothyroxine group and 223 (53.2%) in the saline group (adjusted risk ratio, 1.01; 95% confidence interval [CI], 0.97 to 1.07; P = 0.57). Graft survival at 30 days occurred in 224 hearts (97.4%) transplanted from donors assigned to receive levothyroxine and 213 hearts (95.5%) transplanted from donors assigned to receive saline (difference, 1.9 percentage points; 95% CI, -2.3 to 6.0; P<0.001 for noninferiority at a margin of 6 percentage points). There were no substantial between-group differences in weaning from vasopressor therapy, ejection fraction on echocardiography, or organs transplanted per donor, but more cases of severe hypertension and tachycardia occurred in the levothyroxine group than in the saline group. CONCLUSIONS: In hemodynamically unstable brain-dead potential heart donors, intravenous levothyroxine infusion did not result in significantly more hearts being transplanted than saline infusion. (Funded by Mid-America Transplant and others; ClinicalTrials.gov number, NCT04415658.).
Assuntos
Morte Encefálica , Transplante de Coração , Tiroxina , Doadores de Tecidos , Obtenção de Tecidos e Órgãos , Humanos , Encéfalo , Tiroxina/administração & dosagem , Administração Intravenosa , HemodinâmicaRESUMO
BACKGROUND: While inflammatory and immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in peripheral blood are extensively described, responses at the upper respiratory mucosal site of initial infection are relatively poorly defined. We sought to identify mucosal cytokine/chemokine signatures that distinguished coronavirus disease 2019 (COVID-19) severity categories, and relate these to disease progression and peripheral inflammation. METHODS: We measured 35 cytokines and chemokines in nasal samples from 274 patients hospitalized with COVID-19. Analysis considered the timing of sampling during disease, as either the early (0-5 days after symptom onset) or late (6-20 days after symptom onset) phase. RESULTS: Patients that survived severe COVID-19 showed interferon (IFN)-dominated mucosal immune responses (IFN-γ, CXCL10, and CXCL13) early in infection. These early mucosal responses were absent in patients who would progress to fatal disease despite equivalent SARS-CoV-2 viral load. Mucosal inflammation in later disease was dominated by interleukin 2 (IL-2), IL-10, IFN-γ, and IL-12p70, which scaled with severity but did not differentiate patients who would survive or succumb to disease. Cytokines and chemokines in the mucosa showed distinctions from responses evident in the peripheral blood, particularly during fatal disease. CONCLUSIONS: Defective early mucosal antiviral responses anticipate fatal COVID-19 but are not associated with viral load. Early mucosal immune responses may define the trajectory of severe COVID-19.
Assuntos
COVID-19 , Citocinas , Inflamação , SARS-CoV-2 , Humanos , COVID-19/imunologia , COVID-19/mortalidade , Masculino , Feminino , Pessoa de Meia-Idade , SARS-CoV-2/imunologia , Citocinas/sangue , Idoso , Inflamação/imunologia , Imunidade nas Mucosas , Carga Viral , Adulto , Quimiocinas/sangue , Índice de Gravidade de Doença , Mucosa Nasal/imunologia , Mucosa Nasal/virologiaRESUMO
BACKGROUND: We aimed to test the hypothesis that development of metastatic infection represents a distinct clinical endpoint from death due to Staphylococcus aureus bacteremia (SAB). METHODS: We conducted a retrospective observational study of adults with SAB between 20 December 2019 and 23 August st2022 (n = 464). Simple logistic regression, odds ratios, and z-scores were used to compare host, clinical, and microbiologic features. RESULTS: Co-occurrence of attributable mortality and metastatic infection was infrequent. Charlson Comorbidity Index and age were strongly associated with attributable mortality, but not metastatic infection. We compared patients with fatal SAB (without clinically-apparent metastatic complications, 14.4% of cohort), metastatic SAB (without attributable mortality, 22.2%), neither complication (56.7%), and overlapping fatal/metastatic SAB (6.7%). Compared to SAB without complications, fatal SAB was specifically associated with older age and multi-morbidity. Metastatic SAB was specifically associated with community acquisition, persistent fever, persistent bacteremia, and recurrence. Endocarditis was over-represented in the fatal/metastatic SAB overlap group, which shared patient characteristics with fatal SAB. In contrast to other (predominantly musculoskeletal) metastatic complications, endocarditis was associated with increased mortality, with death occurring in older multi-morbid patients later after SAB onset. CONCLUSIONS: Patients with SAB experience distinct clinical endpoints: (i) early death, associated with multi-morbidity and age; (ii) metastatic (predominantly musculoskeletal) SAB; (iii) endocarditis, associated with late death occurring in older people with multi-morbidity, and (iv) bacteraemia without complications. These distinctions could be important for selecting appropriate outcomes in clinical trials: different interventions might be required to reduce mortality versus improve clinical response in patients with metastatic SAB.
Assuntos
Bacteriemia , Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Bacteriemia/microbiologia , Bacteriemia/mortalidade , Infecções Estafilocócicas/mortalidade , Infecções Estafilocócicas/microbiologia , Masculino , Feminino , Estudos Retrospectivos , Pessoa de Meia-Idade , Idoso , Staphylococcus aureus/isolamento & purificação , Adulto , Idoso de 80 Anos ou maisRESUMO
BACKGROUND: Staphylococcus aureus bacteraemia (SAB) is a clinically heterogeneous disease. The ability to identify sub-groups of patients with shared traits (sub-phenotypes) is an unmet need that could allow patient stratification for clinical management and research. We aimed to test the hypothesis that clinically-relevant sub-phenotypes can be reproducibly identified amongst patients with SAB. METHODS: We studied three cohorts of hospitalised adults with monomicrobial SAB: a UK retrospective observational study (Edinburgh cohort, n=458), the UK ARREST randomised trial (n=758), and the Spanish SAFO randomised trial (n=214). Latent class analysis was used to identify sub-phenotypes using routinely-collected clinical data, without considering outcomes. Mortality and microbiologic outcomes were then compared between sub-phenotypes. RESULTS: Included patients had predominantly methicillin-susceptible SAB (1366/1430,95.5%). We identified five distinct, reproducible clinical sub-phenotypes: (A) SAB associated with older age and comorbidity, (B) nosocomial intravenous catheter-associated SAB in younger people without comorbidity, (C) community-acquired metastatic SAB, (D) SAB associated with chronic kidney disease, and (E) SAB associated with injection drug use. Survival and microbiologic outcomes differed between the sub-phenotypes. 84-day mortality was highest in sub-phenotype A, and lowest in B and E. Microbiologic outcomes were worse in sub-phenotype C. In a secondary analysis of the ARREST trial, adjunctive rifampicin was associated with increased 84-day mortality in sub-phenotype B and improved microbiologic outcomes in sub-phenotype C. CONCLUSIONS: We have identified reproducible and clinically-relevant sub-phenotypes within SAB, and provide proof-of-principle of differential treatment effects. Through clinical trial enrichment and patient stratification, these sub-phenotypes could contribute to a personalised medicine approach to SAB.
RESUMO
OBJECTIVE: Endocrine systems are disrupted in acute illness, and symptoms reported following coronavirus disease 2019 (COVID-19) are similar to those found with clinical hormone deficiencies. We hypothesised that people with severe acute COVID-19 and with post-COVID symptoms have glucocorticoid and sex hormone deficiencies. DESIGN/PATIENTS: Samples were obtained for analysis from two UK multicentre cohorts during hospitalisation with COVID-19 (International Severe Acute Respiratory Infection Consortium/World Health Organisation [WHO] Clinical Characterization Protocol for Severe Emerging Infections in the UK study), and at follow-up 5 months after hospitalisation (Post-hospitalisation COVID-19 study). MEASUREMENTS: Plasma steroids were quantified by liquid chromatography-mass spectrometry. Steroid concentrations were compared against disease severity (WHO ordinal scale) and validated symptom scores. Data are presented as geometric mean (SD). RESULTS: In the acute cohort (n = 239, 66.5% male), plasma cortisol concentration increased with disease severity (cortisol 753.3 [1.6] vs. 429.2 [1.7] nmol/L in fatal vs. least severe, p < .001). In males, testosterone concentrations decreased with severity (testosterone 1.2 [2.2] vs. 6.9 [1.9] nmol/L in fatal vs. least severe, p < .001). In the follow-up cohort (n = 198, 62.1% male, 68.9% ongoing symptoms, 165 [121-192] days postdischarge), plasma cortisol concentrations (275.6 [1.5] nmol/L) did not differ with in-hospital severity, perception of recovery, or patient-reported symptoms. Male testosterone concentrations (12.6 [1.5] nmol/L) were not related to in-hospital severity, perception of recovery or symptom scores. CONCLUSIONS: Circulating glucocorticoids in patients hospitalised with COVID-19 reflect acute illness, with a marked rise in cortisol and fall in male testosterone. These findings are not observed 5 months from discharge. The lack of association between hormone concentrations and common post-COVID symptoms suggests steroid insufficiency does not play a causal role in this condition.
Assuntos
COVID-19 , Humanos , Masculino , Feminino , Hidrocortisona , Doença Aguda , Assistência ao Convalescente , Alta do Paciente , Glucocorticoides/uso terapêutico , Esteroides/uso terapêutico , Gravidade do Paciente , TestosteronaRESUMO
We characterized the epidemiology, host-pathogen characteristics, and outcomes of severe adult pulmonary Streptococcus pyogenes infections that coincided with a high community caseload in central Scotland, UK. The pulmonary infections had high illness and death rates and were associated with socioeconomic deprivation, influenza A co-infection, and the M1UK lineage of S. pyogenes.
Assuntos
Influenza Humana , Pneumonia , Infecções Estreptocócicas , Adulto , Humanos , Streptococcus pyogenes , Infecções Estreptocócicas/epidemiologia , Escócia/epidemiologiaRESUMO
BACKGROUND: Immunocompromised patients may be at higher risk of mortality if hospitalised with Coronavirus Disease 2019 (COVID-19) compared with immunocompetent patients. However, previous studies have been contradictory. We aimed to determine whether immunocompromised patients were at greater risk of in-hospital death and how this risk changed over the pandemic. METHODS AND FINDINGS: We included patients > = 19 years with symptomatic community-acquired COVID-19 recruited to the ISARIC WHO Clinical Characterisation Protocol UK prospective cohort study. We defined immunocompromise as immunosuppressant medication preadmission, cancer treatment, organ transplant, HIV, or congenital immunodeficiency. We used logistic regression to compare the risk of death in both groups, adjusting for age, sex, deprivation, ethnicity, vaccination, and comorbidities. We used Bayesian logistic regression to explore mortality over time. Between 17 January 2020 and 28 February 2022, we recruited 156,552 eligible patients, of whom 21,954 (14%) were immunocompromised. In total, 29% (n = 6,499) of immunocompromised and 21% (n = 28,608) of immunocompetent patients died in hospital. The odds of in-hospital mortality were elevated for immunocompromised patients (adjusted OR 1.44, 95% CI [1.39, 1.50], p < 0.001). Not all immunocompromising conditions had the same risk, for example, patients on active cancer treatment were less likely to have their care escalated to intensive care (adjusted OR 0.77, 95% CI [0.7, 0.85], p < 0.001) or ventilation (adjusted OR 0.65, 95% CI [0.56, 0.76], p < 0.001). However, cancer patients were more likely to die (adjusted OR 2.0, 95% CI [1.87, 2.15], p < 0.001). Analyses were adjusted for age, sex, socioeconomic deprivation, comorbidities, and vaccination status. As the pandemic progressed, in-hospital mortality reduced more slowly for immunocompromised patients than for immunocompetent patients. This was particularly evident with increasing age: the probability of the reduction in hospital mortality being less for immunocompromised patients aged 50 to 69 years was 88% for men and 83% for women, and for those >80 years was 99% for men and 98% for women. The study is limited by a lack of detailed drug data prior to admission, including steroid doses, meaning that we may have incorrectly categorised some immunocompromised patients as immunocompetent. CONCLUSIONS: Immunocompromised patients remain at elevated risk of death from COVID-19. Targeted measures such as additional vaccine doses, monoclonal antibodies, and nonpharmaceutical preventive interventions should be continually encouraged for this patient group. TRIAL REGISTRATION: ISRCTN 66726260.
Assuntos
COVID-19 , Masculino , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , SARS-CoV-2 , Estudos Prospectivos , Mortalidade Hospitalar , Teorema de Bayes , Hospedeiro Imunocomprometido , Reino Unido/epidemiologia , Organização Mundial da SaúdeRESUMO
MOTIVATION: A common experimental output in biomedical science is a list of genes implicated in a given biological process or disease. The gene lists resulting from a group of studies answering the same, or similar, questions can be combined by ranking aggregation methods to find a consensus or a more reliable answer. Evaluating a ranking aggregation method on a specific type of data before using it is required to support the reliability since the property of a dataset can influence the performance of an algorithm. Such evaluation on gene lists is usually based on a simulated database because of the lack of a known truth for real data. However, simulated datasets tend to be too small compared to experimental data and neglect key features, including heterogeneity of quality, relevance and the inclusion of unranked lists. RESULTS: In this study, a group of existing methods and their variations that are suitable for meta-analysis of gene lists are compared using simulated and real data. Simulated data were used to explore the performance of the aggregation methods as a function of emulating the common scenarios of real genomic data, with various heterogeneity of quality, noise level and a mix of unranked and ranked data using 20 000 possible entities. In addition to the evaluation with simulated data, a comparison using real genomic data on the SARS-CoV-2 virus, cancer (non-small cell lung cancer) and bacteria (macrophage apoptosis) was performed. We summarize the results of our evaluation in a simple flowchart to select a ranking aggregation method, and in an automated implementation using the meta-analysis by information content algorithm to infer heterogeneity of data quality across input datasets. AVAILABILITY AND IMPLEMENTATION: The code for simulated data generation and running edited version of algorithms: https://github.com/baillielab/comparison_of_RA_methods. Code to perform an optimal selection of methods based on the results of this review, using the MAIC algorithm to infer the characteristics of an input dataset, can be downloaded here: https://github.com/baillielab/maic. An online service for running MAIC: https://baillielab.net/maic. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Assuntos
COVID-19 , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Algoritmos , Carcinoma Pulmonar de Células não Pequenas/genética , COVID-19/genética , Neoplasias Pulmonares/genética , Reprodutibilidade dos Testes , SARS-CoV-2 , Metanálise como AssuntoRESUMO
BACKGROUND: Recent well-powered genome-wide association studies have enhanced prediction of substance use outcomes via polygenic scores (PGSs). Here, we test (1) whether these scores contribute to prediction over-and-above family history, (2) the extent to which PGS prediction reflects inherited genetic variation v. demography (population stratification and assortative mating) and indirect genetic effects of parents (genetic nurture), and (3) whether PGS prediction is mediated by behavioral disinhibition prior to substance use onset. METHODS: PGSs for alcohol, cannabis, and nicotine use/use disorder were calculated for Minnesota Twin Family Study participants (N = 2483, 1565 monozygotic/918 dizygotic). Twins' parents were assessed for histories of substance use disorder. Twins were assessed for behavioral disinhibition at age 11 and substance use from ages 14 to 24. PGS prediction of substance use was examined using linear mixed-effects, within-twin pair, and structural equation models. RESULTS: Nearly all PGS measures were associated with multiple types of substance use independently of family history. However, most within-pair PGS prediction estimates were substantially smaller than the corresponding between-pair estimates, suggesting that prediction is driven in part by demography and indirect genetic effects of parents. Path analyses indicated the effects of both PGSs and family history on substance use were mediated via disinhibition in preadolescence. CONCLUSIONS: PGSs capturing risk of substance use and use disorder can be combined with family history measures to augment prediction of substance use outcomes. Results highlight indirect sources of genetic associations and preadolescent elevations in behavioral disinhibition as two routes through which these scores may relate to substance use.
Assuntos
Cannabis , Alucinógenos , Transtornos Relacionados ao Uso de Substâncias , Criança , Adolescente , Humanos , Adulto Jovem , Adulto , Nicotina , Estudo de Associação Genômica Ampla , Etanol , Transtornos Relacionados ao Uso de Substâncias/epidemiologia , Transtornos Relacionados ao Uso de Substâncias/genética , Agonistas de Receptores de CanabinoidesRESUMO
The age- and time-dependent effects of binge drinking on adolescent brain development have not been well characterized even though binge drinking is a health crisis among adolescents. The impact of binge drinking on gray matter volume (GMV) development was examined using 5 waves of longitudinal data from the National Consortium on Alcohol and NeuroDevelopment in Adolescence study. Binge drinkers (n = 166) were compared with non-binge drinkers (n = 82 after matching on potential confounders). Number of binge drinking episodes in the past year was linked to decreased GMVs in bilateral Desikan-Killiany cortical parcellations (26 of 34 with P < 0.05/34) with the strongest effects observed in frontal regions. Interactions of binge drinking episodes and baseline age demonstrated stronger effects in younger participants. Statistical models sensitive to number of binge episodes and their temporal proximity to brain volumes provided the best fits. Consistent with prior research, results of this study highlight the negative effects of binge drinking on the developing brain. Our results present novel findings that cortical GMV decreases were greater in closer proximity to binge drinking episodes in a dose-response manner. This relation suggests a causal effect and raises the possibility that normal growth trajectories may be reinstated with alcohol abstinence.
Assuntos
Consumo Excessivo de Bebidas Alcoólicas , Substância Cinzenta , Adolescente , Consumo de Bebidas Alcoólicas , Encéfalo/diagnóstico por imagem , Etanol/farmacologia , Substância Cinzenta/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodosRESUMO
This study examined how youth aggressive and delinquent externalizing problem behaviors across childhood and adolescence are connected to consequential psychosocial life outcomes in adulthood. Using data from a longitudinal, high-risk sample (N = 1069) that assessed children and their parents regularly from early childhood (ages 3-5) through adulthood, multilevel growth factors of externalizing behaviors were used to predict adult outcomes (age 24-31), providing a sense of how externalizing problems across development were related to these outcomes via maternal, paternal, teacher, and child report. Findings indicated strong support for the lasting connections between youth externalizing problems with later educational attainment and legal difficulties, spanning informants and enduring beyond other meaningful contributors (i.e., child sex, cognitive ability, parental income and education, parental mental health and relationship quality). Some support was also found, although less consistently, linking externalizing problems and later alcohol use as well as romantic relationship quality. Delinquent/rule-breaking behaviors were often stronger predictors of later outcomes than aggressive behaviors. Taken together, these results indicate the importance of the role youth externalizing behaviors have in adult psychosocial functioning one to two decades later.
Assuntos
Transtornos do Comportamento Infantil , Criança , Humanos , Pré-Escolar , Adulto , Adolescente , Adulto Jovem , Transtornos do Comportamento Infantil/psicologia , Individualidade , Agressão/psicologia , Consumo de Bebidas Alcoólicas/psicologia , Pais , Estudos LongitudinaisRESUMO
OBJECTIVE: Peer groups represent a critical developmental context in adolescence, and there are many well-documented associations between personality and peer behavior at this age. However, the precise nature and direction of these associations are difficult to determine as youth both select into, and are influenced by, their peers. METHOD: We thus examined the phenotypic, genetic, and environmental links between antisocial and prosocial peer characteristics and several personality traits from middle childhood to late adolescence (ages 11, 14, and 17 years) in a longitudinal twin sample (N = 3762) using teacher ratings of personality and self-reports of peer characteristics. RESULTS: Less adaptive trait profiles (i.e., high negative emotionality, low conscientiousness, and low agreeableness) were associated with more antisocial and fewer prosocial peer characteristics across time. Associations between personality traits related to emotionality (negative emotionality and extraversion) and peer behavior were largely attributable to shared genetic influences, while associations between personality traits related to behavioral control (conscientiousness and agreeableness) and peer behavior were due to overlapping genetic and shared environmental influences. CONCLUSIONS: Overall, results suggest a set of environmental presses that push youth toward both behavioral undercontrol and antisocial peer affiliations, making the identification of such influences and their relative importance a critical avenue of future work.
Assuntos
Personalidade , Gêmeos , Humanos , Adolescente , Criança , Personalidade/genética , Gêmeos/genética , Transtornos da Personalidade , Transtorno da Personalidade Antissocial/genética , Grupo AssociadoRESUMO
We systematically evaluated randomized-controlled trials (RCTs) for Staphylococcus aureus bacteremia (SAB). There was intertrial heterogeneity in cohort characteristics, including bacteremia source, complicated SAB, and comorbidities. Reporting of cohort characteristics was itself variable, including bacteremia source and illness severity. Selection bias was introduced by exclusion criteria relating to comorbidities, illness severity, infection types, and source control. Mortality was lower in RCT control arms compared with observational cohorts. Differences in outcome definitions impedes meta-analysis. These issues complicate the interpretation and application of SAB RCT results. The value of these trials should be maximized by a standardized approach to recruitment, definitions, and reporting.
Assuntos
Bacteriemia , Infecções Estafilocócicas , Bacteriemia/tratamento farmacológico , Estudos de Coortes , Humanos , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureusRESUMO
Immunopathology occurs in the lung and spleen in fatal coronavirus disease (COVID-19), involving monocytes/macrophages and plasma cells. Antiinflammatory therapy reduces mortality, but additional therapeutic targets are required. We aimed to gain mechanistic insight into COVID-19 immunopathology by targeted proteomic analysis of pulmonary and splenic tissues. Lung parenchymal and splenic tissue was obtained from 13 postmortem examinations of patients with fatal COVID-19. Control tissue was obtained from cancer resection samples (lung) and deceased organ donors (spleen). Protein was extracted from tissue by phenol extraction. Olink multiplex immunoassay panels were used for protein detection and quantification. Proteins with increased abundance in the lung included MCP-3, antiviral TRIM21, and prothrombotic TYMP. OSM and EN-RAGE/S100A12 abundance was correlated and associated with inflammation severity. Unsupervised clustering identified "early viral" and "late inflammatory" clusters with distinct protein abundance profiles, and differences in illness duration before death and presence of viral RNA. In the spleen, lymphocyte chemotactic factors and CD8A were decreased in abundance, and proapoptotic factors were increased. B-cell receptor signaling pathway components and macrophage colony stimulating factor (CSF-1) were also increased. Additional evidence for a subset of host factors (including DDX58, OSM, TYMP, IL-18, MCP-3, and CSF-1) was provided by overlap between 1) differential abundance in spleen and lung tissue; 2) meta-analysis of existing datasets; and 3) plasma proteomic data. This proteomic analysis of lung parenchymal and splenic tissue from fatal COVID-19 provides mechanistic insight into tissue antiviral responses, inflammation and disease stages, macrophage involvement, pulmonary thrombosis, splenic B-cell activation, and lymphocyte depletion.