Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Chem Phys ; 160(20)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38814008

RESUMO

Sire is a Python/C++ library that is used both to prototype new algorithms and as an interoperability engine for exchanging information between molecular simulation programs. It provides a collection of file parsers and information converters that together make it easier to combine and leverage the functionality of many other programs and libraries. This empowers researchers to use sire to write a single script that can, for example, load a molecule from a PDBx/mmCIF file via Gemmi, perform SMARTS searches via RDKit, parameterize molecules using BioSimSpace, run GPU-accelerated molecular dynamics via OpenMM, and then display the resulting dynamics trajectory in a NGLView Jupyter notebook 3D molecular viewer. This functionality is built on by BioSimSpace, which uses sire's molecular information engine to interconvert with programs such as GROMACS, NAMD, Amber, and AmberTools for automated molecular parameterization and the running of molecular dynamics, metadynamics, and alchemical free energy workflows. Sire comes complete with a powerful molecular information search engine, plus trajectory loading and editing, analysis, and energy evaluation engines. This, when combined with an in-built computer algebra system, gives substantial flexibility to researchers to load, search for, edit, and combine molecular information from multiple sources and use that to drive novel algorithms by combining functionality from other programs. Sire is open source (GPL3) and is available via conda and at a free Jupyter notebook server at https://try.openbiosim.org. Sire is supported by the not-for-profit OpenBioSim community interest company.

2.
J Chem Theory Comput ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39254715

RESUMO

Alchemical absolute binding free energy (ABFE) calculations have substantial potential in drug discovery, but are often prohibitively computationally expensive. To unlock their potential, efficient automated ABFE workflows are required to reduce both computational cost and human intervention. We present a fully automated ABFE workflow based on the automated selection of λ windows, the ensemble-based detection of equilibration, and the adaptive allocation of sampling time based on inter-replicate statistics. We find that the automated selection of intermediate states with consistent overlap is rapid, robust, and simple to implement. Robust detection of equilibration is achieved with a paired t-test between the free energy estimates at initial and final portions of a an ensemble of runs. We determine reasonable default parameters for all algorithms and show that the full workflow produces equivalent results to a nonadaptive scheme over a variety of test systems, while often accelerating equilibration. Our complete workflow is implemented in the open-source package A3FE (https://github.com/michellab/a3fe).

3.
J Chem Theory Comput ; 19(12): 3686-3704, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37285579

RESUMO

Alchemical absolute binding free energy calculations are of increasing interest in drug discovery. These calculations require restraints between the receptor and ligand to restrict their relative positions and, optionally, orientations. Boresch restraints are commonly used, but they must be carefully selected in order to sufficiently restrain the ligand and to avoid inherent instabilities. Applying multiple distance restraints between anchor points in the receptor and ligand provides an alternative framework without inherent instabilities which may provide convergence benefits by more strongly restricting the relative movements of the receptor and ligand. However, there is no simple method to calculate the free energy of releasing these restraints due to the coupling of the internal and external degrees of freedom of the receptor and ligand. Here, a method to rigorously calculate free energies of binding with multiple distance restraints by imposing intramolecular restraints on the anchor points is proposed. Absolute binding free energies for the human macrophage migration inhibitory factor/MIF180, system obtained using a variety of Boresch restraints and rigorous and nonrigorous implementations of multiple distance restraints are compared. It is shown that several multiple distance restraint schemes produce estimates in good agreement with Boresch restraints. In contrast, calculations without orientational restraints produce erroneously favorable free energies of binding by up to approximately 4 kcal mol-1. These approaches offer new options for the deployment of alchemical absolute binding free energy calculations.


Assuntos
Simulação de Dinâmica Molecular , Humanos , Termodinâmica , Ligantes , Entropia , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA