Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Pineal Res ; 73(4): e12826, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35996978

RESUMO

Spaceflight exposes crewmembers to circadian misalignment and sleep loss, which impair cognition and increase the risk of errors and accidents. We compared the effects of an experimental dynamic lighting schedule (DLS) with a standard static lighting schedule (SLS) on circadian phase, self-reported sleep and cognition during a 45-day simulated space mission. Sixteen participants (mean age [±SD] 37.4 ± 6.7 years; 5 F; n = 8/lighting condition) were studied in four-person teams at the NASA Human Exploration Research Analog. Participants were scheduled to sleep 8 h/night on two weekend nights, 5 h/night on five weekday nights, repeated for six 7-day cycles, with scheduled waketime fixed at 7:00 a.m. Compared to the SLS where illuminance and spectrum remained constant during wake (~4000K), DLS increased the illuminance and short-wavelength (blue) content of white light (~6000K) approximately threefold in the main workspace (Level 1), until 3 h before bedtime when illuminance was reduced by ~96% and the blue content also reduced throughout (~4000K × 2 h, ~3000K × 1 h) until bedtime. The average (±SE) urinary 6-sulphatoxymelatonin (aMT6s) acrophase time was significantly later in the SLS (6.22 ± 0.34 h) compared to the DLS (4.76 ± 0.53 h) and more variable in SLS compared to DLS (37.2 ± 3.6 min vs. 28.2 ± 2.4 min, respectively, p = .04). Compared to DLS, self-reported sleep was more frequently misaligned relative to circadian phase in SLS RR: 6.75, 95% CI 1.55-29.36, p = .01), but neither self-reported sleep duration nor latency to sleep was different between lighting conditions. Accuracy in the abstract matching and matrix reasoning tests were significantly better in DLS compared to SLS (false discovery rate-adjusted p ≤ .04). Overall, DLS alleviated the drift in circadian phase typically observed in space analog studies and reduced the prevalence of self-reported sleep episodes occurring at an adverse circadian phase. Our results support incorporating DLS in future missions, which may facilitate appropriate circadian alignment and reduce the risk of sleep disruption.


Assuntos
Iluminação , Melatonina , Humanos , Adulto , Ritmo Circadiano , Autorrelato , Sono , Luz
2.
Future Oncol ; 18(19): 2415-2431, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35583358

RESUMO

Background: Chimeric antigen receptor T-cell (CAR-T) therapy represents a new frontier in multiple myeloma. It is important to understand critical success factors (CSFs) that may optimize its use in this therapeutic area. Methods: We estimated the CAR-T process using time-driven activity-based costing. Information was obtained through interviews at four US oncology centers and with payer representatives, and through publicly available data. Results: The CAR-T process comprises 13 steps which take 177 days; it was estimated to include 46 professionals and ten care settings. CSFs included proactive collaboration, streamlined reimbursement and CAR-T administration in alternative settings when possible. Implementing CSFs may reduce episode time and costs by 14.4 and 13.2%, respectively. Conclusion: Our research provides a blueprint for improving efficiencies in CAR-T therapy, thereby increasing its sustainability for multiple myeloma.


Patients with multiple myeloma can now be treated with chimeric antigen receptor T-cell (CAR-T) therapy. We studied how CAR-T therapy is used for multiple myeloma. We also studied things that could help make this therapy easier for doctors to use. The CAR-T process takes 13 steps and 177 days. It begins with the choice to use the therapy and ends about 100 days after it is used. The process uses 46 different healthcare professionals and ten different locations. We found several possible changes that can improve this process. Of these changes, three stand out. First, improved teamwork between members of the care team can help them prepare for and resolve possible problems. Second, reducing insurance red tape will make it easier to provide CAR-T therapy to patients. Third, allowing use of CAR-T therapy in places other than hospitals can help more patients receive this therapy. If applied, these three things may lower the time needed to treat patients by 14.4% and may reduce costs by 13.2%.


Assuntos
Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Imunoterapia Adotiva , Mieloma Múltiplo/terapia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética , Linfócitos T
3.
Air Med J ; 39(6): 458-463, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33228894

RESUMO

OBJECTIVE: The purpose of this study was to evaluate the use of a respiratory protocol for the interhospital transport of infants with respiratory distress on bubble continuous positive airway pressure (bCPAP) and provide information on the safety of bCPAP during transport via ground and helicopter. METHODS: We evaluated a retrospective cohort study of neonates (gestational age 22-41 weeks) transported to our level 4 neonatal intensive care unit (NICU) before (n = 529) and after implementing (n = 540) protocols for increasing bCPAP and intubation criteria. Infants were evaluated for intubation before transport, the safety of transport, and the need for intubation shortly after arrival in the NICU. RESULTS: After initiating the protocols, less infants received mechanical ventilation, and more infants received bCPAP for transport via ground and helicopter. Upon arrival to the NICU, infants using the protocols had lower fraction of inspired oxygen and higher continuous positive airway pressures, and similar numbers required intubations in the first 12 hours. There were no differences in the rate of pneumothoraces. CONCLUSIONS: bCPAP can be used on both ground and helicopter transport of very small infants. Respiratory protocols decreased mechanical ventilation during transport without increasing the need for intubation within 12 hours of arrival.


Assuntos
Pressão Positiva Contínua nas Vias Aéreas , Síndrome do Desconforto Respiratório do Recém-Nascido , Idade Gestacional , Humanos , Lactente , Recém-Nascido , Unidades de Terapia Intensiva Neonatal , Síndrome do Desconforto Respiratório do Recém-Nascido/terapia , Estudos Retrospectivos
4.
Sleep Adv ; 5(1): zpae032, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903700

RESUMO

Study Objectives: We previously reported that during a 45-day simulated space mission, a dynamic lighting schedule (DLS) improved circadian phase alignment and performance assessed once on selected days. This study aimed to evaluate how DLS affected performance on a 5-minute psychomotor vigilance task (PVT) administered multiple times per day on selected days. Methods: Sixteen crewmembers (37.4 ±â€…6.7 years; 5F) underwent six cycles of 2 × 8-hour/night followed by 5 × 5-hour/night sleep opportunities. During the DLS (n = 8), daytime white light exposure was blue-enriched (~6000 K; Level 1: 1079, Level 2: 76 melanopic equivalent daytime illuminance (melEDI) lux) and blue-depleted (~3000-4000 K; L1: 21, L2: 2 melEDI lux) 3 hours before bed. In the standard lighting schedule (SLS; n = 8), lighting remained constant (~4500K; L1: 284, L2 62 melEDI lux). Effects of lighting condition (DLS/SLS), sleep condition (5/8 hours), time into mission, and their interactions, and time awake on PVT performance were analyzed using generalized linear mixed models. Results: The DLS was associated with fewer attentional lapses (reaction time [RT] > 500 milliseconds) compared to SLS. Lapses, mean RT, and 10% fastest/slowest RTs were worse following 5 compared to 8 hours of sleep but not between lighting conditions. There was an effect of time into mission on RTs, likely due to sleep loss. Overall performance differed by time of day, with longer RTs at the beginning and end of the day. There were more lapses and slower RTs in the afternoon in the SLS compared to the DLS condition. Conclusions: Future missions should incorporate DLS to enhance circadian alignment and performance. This paper is part of the Sleep and Circadian Rhythms: Management of Fatigue in Occupational Settings Collection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA