RESUMO
We previously demonstrated a role of piriform cortex (Pir) in relapse to fentanyl seeking after food choice-induced voluntary abstinence. Here, we used this model to further study the role of Pir and its afferent projections in fentanyl relapse. We trained male and female rats to self-administer palatable food pellets for 6 d (6 h/day) and fentanyl (2.5 µg/kg/infusion, i.v.) for 12 d (6 h/day). We assessed relapse to fentanyl seeking after 12 voluntary abstinence sessions, achieved through a discrete choice procedure between fentanyl and palatable food (20 trials/session). We determined projection-specific activation of Pir afferents during fentanyl relapse with Fos plus the retrograde tracer cholera toxin B (injected into Pir). Fentanyl relapse was associated with increased Fos expression in anterior insular cortex (AI) and prelimbic cortex (PL) neurons projecting to Pir. We next used an anatomical disconnection procedure to determine the causal role of these two projections (AIâPir and PLâPir) in fentanyl relapse. Contralateral but not ipsilateral disconnection of AIâPir projections decreased fentanyl relapse but not reacquisition of fentanyl self-administration. In contrast, contralateral but not ipsilateral disconnection of PLâPir projections modestly decreased reacquisition but not relapse. Fluorescence-activated cell sorting and quantitative PCR data showed molecular changes within Pir Fos-expressing neurons associated with fentanyl relapse. Finally, we found minimal or no sex differences in fentanyl self-administration, fentanyl versus food choice, and fentanyl relapse. Our results indicate that AIâPir and PLâPir projections play dissociable roles in nonreinforced relapse to fentanyl seeking versus reacquisition of fentanyl self-administration after food choice-induced voluntary abstinence.SIGNIFICANCE STATEMENT We previously showed a role of Pir in fentanyl relapse after food choice-induced voluntary abstinence in rats, a procedure mimicking human abstinence or a significant reduction in drug self-administration because of the availability of alternative nondrug rewards. Here, we aimed to further characterize the role of Pir in fentanyl relapse by investigating the role of Pir afferent projections and analyzing molecular changes in relapse-activated Pir neurons. We identified dissociable roles of two Pir afferent projections (AIâPir and PLâPir) in relapse to fentanyl seeking versus reacquisition of fentanyl self-administration after voluntary abstinence. We also characterized molecular changes within Pir Fos-expressing neurons associated with fentanyl relapse.
Assuntos
Fentanila , Córtex Piriforme , Humanos , Ratos , Masculino , Feminino , Animais , Ratos Sprague-Dawley , Preferências Alimentares , Alimentos , Autoadministração , Extinção Psicológica , Comportamento de Procura de Droga/fisiologiaRESUMO
The brain µ-opioid receptor (MOR) is critical for the analgesic, rewarding, and addictive effects of opioid drugs. However, in rat models of opioid-related behaviors, the circuit mechanisms of MOR-expressing cells are less known because of a lack of genetic tools to selectively manipulate them. We introduce a CRISPR-based Oprm1-Cre knock-in transgenic rat that provides cell type-specific genetic access to MOR-expressing cells. After performing anatomic and behavioral validation experiments, we used the Oprm1-Cre knock-in rats to study the involvement of NAc MOR-expressing cells in heroin self-administration in male and female rats. Using RNAscope, autoradiography, and FISH chain reaction (HCR-FISH), we found no differences in Oprm1 expression in NAc, dorsal striatum, and dorsal hippocampus, or MOR receptor density (except dorsal striatum) or function between Oprm1-Cre knock-in rats and wildtype littermates. HCR-FISH assay showed that iCre is highly coexpressed with Oprm1 (95%-98%). There were no genotype differences in pain responses, morphine analgesia and tolerance, heroin self-administration, and relapse-related behaviors. We used the Cre-dependent vector AAV1-EF1a-Flex-taCasp3-TEVP to lesion NAc MOR-expressing cells. We found that the lesions decreased acquisition of heroin self-administration in male Oprm1-Cre rats and had a stronger inhibitory effect on the effort to self-administer heroin in female Oprm1-Cre rats. The validation of an Oprm1-Cre knock-in rat enables new strategies for understanding the role of MOR-expressing cells in rat models of opioid addiction, pain-related behaviors, and other opioid-mediated functions. Our initial mechanistic study indicates that lesioning NAc MOR-expressing cells had different effects on heroin self-administration in male and female rats.SIGNIFICANCE STATEMENT The brain µ-opioid receptor (MOR) is critical for the analgesic, rewarding, and addictive effects of opioid drugs. However, in rat models of opioid-related behaviors, the circuit mechanisms of MOR-expressing cells are less known because of a lack of genetic tools to selectively manipulate them. We introduce a CRISPR-based Oprm1-Cre knock-in transgenic rat that provides cell type-specific genetic access to brain MOR-expressing cells. After performing anatomical and behavioral validation experiments, we used the Oprm1-Cre knock-in rats to show that lesioning NAc MOR-expressing cells had different effects on heroin self-administration in males and females. The new Oprm1-Cre rats can be used to study the role of brain MOR-expressing cells in animal models of opioid addiction, pain-related behaviors, and other opioid-mediated functions.
Assuntos
Dependência de Heroína , Heroína , Ratos , Masculino , Feminino , Animais , Heroína/farmacologia , Analgésicos Opioides/farmacologia , Núcleo Accumbens , Receptores Opioides/metabolismo , Ratos Transgênicos , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo , Dor/metabolismoRESUMO
Protein monoaminylation is a class of posttranslational modification (PTM) that contributes to transcription, physiology and behavior. While recent analyses have focused on histones as critical substrates of monoaminylation, the broader repertoire of monoaminylated proteins in brain remains unclear. Here, we report the development/implementation of a chemical probe for the bioorthogonal labeling, enrichment and proteomics-based detection of dopaminylated proteins in brain. We identified 1,557 dopaminylated proteins - many synaptic - including γCaMKII, which mediates Ca2+-dependent cellular signaling and hippocampal-dependent memory. We found that γCaMKII dopaminylation is largely synaptic and mediates synaptic-to-nuclear signaling, neuronal gene expression and intrinsic excitability, and contextual memory. These results indicate a critical role for synaptic dopaminylation in adaptive brain plasticity, and may suggest roles for these phenomena in pathologies associated with altered monoaminergic signaling.
RESUMO
The orbitofrontal cortex (OFC) and piriform cortex (Pir) play a role in fentanyl relapse after food choice-induced voluntary abstinence, a procedure mimicking abstinence because of availability of alternative nondrug rewards. We used in situ hybridization and pharmacology to determine the role of OFC and Pir cannabinoid and dopamine receptors in fentanyl relapse. We trained male and female rats to self-administer food pellets for 6 d (6 h/d) and intravenous fentanyl (2.5 µg/kg/infusion) for 12 d (6 h/d). We assessed fentanyl relapse after 12 discrete choice sessions between fentanyl and food (20 trials/d), in which rats voluntarily reduced fentanyl self-administration. We used RNAscope to determine whether fentanyl relapse is associated with activity (indicated by Fos) in OFC and Pir cells expressing Cnr1 [which encodes cannabinoid 1 (CB1) receptors] or Drd1 and Drd2 (which encode dopamine D1 and D2 receptors). We injected a CB1 receptor antagonist or agonist (0.3 or 1.0 µg AM251 or WIN55,212-2/hemisphere) into OFC or a dopamine D1 receptor antagonist (1.0 or 3.0 µg SCH39166/hemisphere) into Pir to determine the effect on fentanyl relapse. Fentanyl relapse was associated with OFC cells co-expressing Fos and Cnr1 and Pir cells co-expressing Fos and Drd1 However, injections of the CB1 receptor antagonist AM251 or agonist WIN55,212-2 into OFC or the dopamine D1 receptor antagonist SCH39166 into Pir had no effect on fentanyl relapse. Fentanyl relapse is associated with activation of Cnr1-expressing OFC cells and Drd1-expressing Pir cells, but pharmacological manipulations do not support causal roles of OFC CB1 receptors or Pir dopamine D1 receptors in fentanyl relapse.
Assuntos
Canabinoides , Córtex Piriforme , Animais , Canabinoides/farmacologia , Dopamina , Antagonistas de Dopamina/farmacologia , Feminino , Fentanila/farmacologia , Masculino , Ratos , Receptor CB1 de Canabinoide , Receptores de Dopamina D1/metabolismo , RecidivaRESUMO
RATIONALE AND OBJECTIVE: Pain-related factors increase the risk for opioid addiction, and pain may function as a negative reinforcer to increase opioid taking and seeking. However, experimental pain-related manipulations generally do not increase opioid self-administration in rodents. This discrepancy may reflect insufficient learning of pain-relief contingencies or confounding effects of pain-related behavioral impairments. Here, we determined if pairing noxious stimuli with opioid self-administration would promote pain-related reinstatement of opioid seeking or increase opioid choice over food. METHODS: In Experiment 1, rats self-administered fentanyl in the presence or absence of repeated intraplantar capsaicin injections in distinct contexts to model context-specific exposure to cutaneous nociception. After capsaicin-free extinction in both contexts, we tested if capsaicin would reinstate fentanyl seeking. In Experiment 2, rats self-administered heroin after intraperitoneal (i.p.) lactic acid injections to model acute visceral inflammatory pain. After lactic acid-free extinction, we tested if lactic acid would reinstate heroin seeking. In Experiment 3, we tested if repeated i.p. lactic acid or intraplantar Complete Freund's Adjuvant (CFA; to model sustained inflammatory pain) would increase fentanyl choice over food. RESULTS: In Experiments 1-2, neither capsaicin nor lactic acid reinstated opioid seeking after extinction, and lactic acid did not increase heroin-induced reinstatement. In Experiment 3, lactic acid and CFA decreased reinforcement rate without affecting fentanyl choice. CONCLUSIONS: Results extend the range of conditions across which pain-related manipulations fail to increase opioid seeking in rats and suggest that enhanced opioid-addiction risk in humans with chronic pain involves factors other than enhanced opioid reinforcement and relapse.
Assuntos
Analgésicos Opioides/administração & dosagem , Comportamento de Escolha/efeitos dos fármacos , Comportamento de Procura de Droga/efeitos dos fármacos , Medição da Dor/psicologia , Dor/psicologia , Reforço Psicológico , Animais , Comportamento de Escolha/fisiologia , Condicionamento Operante/efeitos dos fármacos , Condicionamento Operante/fisiologia , Comportamento de Procura de Droga/fisiologia , Extinção Psicológica/efeitos dos fármacos , Extinção Psicológica/fisiologia , Feminino , Fentanila/farmacologia , Masculino , Transtornos Relacionados ao Uso de Opioides/psicologia , Dor/tratamento farmacológico , Medição da Dor/métodos , Ratos , Autoadministração/métodosRESUMO
One major challenge in nanomedicine is the selective delivery of nanoparticles to diseased tissues. Nanoparticle delivery systems require targeting for specific delivery to pathogenic sites when enhanced permeability and retention (EPR) is not suitable or inefficient. Nanoparticle functionalization is a widely-used technique for targeting ligand conjugation; these ligands possess inherent abilities to direct nanoparticle selective binding. This review illustrates methods of ligand-nanoparticle functionalization, provides a cross-section of various ligand classes, including small molecules, peptides, antibodies, engineered proteins, or nucleic acid aptamers, and discusses some unconventional approaches currently under investigation.