Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Biochem J ; 479(19): 2013-2034, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36094147

RESUMO

The opportunistic bacterium Pseudomonas aeruginosa secretes the quorum-sensing molecule N-(3-oxododecanoyl)-l-homoserine lactone (C12) to co-ordinate gene expression profiles favorable for infection. Recent studies have demonstrated that high concentrations of C12 impair many aspects of host cell physiology, including mitochondrial function and cell viability. The cytotoxic effects of C12 are mediated by the lactonase enzyme, Paraoxonase 2 (PON2), which hydrolyzes C12 to a reactive metabolite. However, the influence of C12 on host cell physiology at concentrations observed in patients infected with P. aeruginosa is largely unknown. Since the primary site of P. aeruginosa infections is the mammalian airway, we sought to investigate how PON2 modulates the effects of C12 at subtoxic concentrations using immortalized murine tracheal epithelial cells (TECs) isolated from wild-type (WT) or PON2-knockout (PON2-KO) mice. Our data reveal that C12 at subtoxic concentrations disrupts mitochondrial bioenergetics to hinder cellular proliferation in TECs expressing PON2. Subtoxic concentrations of C12 disrupt normal mitochondrial network morphology in a PON2-dependent manner without affecting mitochondrial membrane potential. In contrast, higher concentrations of C12 depolarize mitochondrial membrane potential and subsequently trigger caspase signaling and apoptotic cell death. These findings demonstrate that different concentrations of C12 impact distinct aspects of host airway epithelial cell physiology through PON2 activity in mitochondria.


Assuntos
Homosserina , Percepção de Quorum , 4-Butirolactona/análogos & derivados , Animais , Arildialquilfosfatase/genética , Arildialquilfosfatase/metabolismo , Arildialquilfosfatase/farmacologia , Caspases/metabolismo , Células Epiteliais/metabolismo , Homosserina/metabolismo , Homosserina/farmacologia , Lactonas/metabolismo , Lactonas/farmacologia , Mamíferos/metabolismo , Camundongos , Mitocôndrias/metabolismo , Pseudomonas aeruginosa/metabolismo
2.
Cancer Cell Int ; 20: 280, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32624705

RESUMO

BACKGROUND: Aberrant activity of cell cycle proteins is one of the key somatic events in non-small cell lung cancer (NSCLC) pathogenesis. In most NSCLC cases, the retinoblastoma protein tumor suppressor (RB) becomes inactivated via constitutive phosphorylation by cyclin dependent kinase (CDK) 4/6, leading to uncontrolled cell proliferation. Palbociclib, a small molecule inhibitor of CDK4/6, has shown anti-tumor activity in vitro and in vivo, with recent studies demonstrating a functional role for palbociclib in reprogramming cellular metabolism. While palbociclib has shown efficacy in preclinical models of NSCLC, the metabolic consequences of CDK4/6 inhibition in this context are largely unknown. METHODS: In our study, we used a combination of stable isotope resolved metabolomics using [U-13C]-glucose and multiple in vitro metabolic assays, to interrogate the metabolic perturbations induced by palbociclib in A549 lung adenocarcinoma cells. Specifically, we assessed changes in glycolytic activity, the pentose phosphate pathway (PPP), and glutamine utilization. We performed these studies following palbociclib treatment with simultaneous silencing of RB1 to define the pRB-dependent changes in metabolism. RESULTS: Our studies revealed palbociclib does not affect glycolytic activity in A549 cells but decreases glucose metabolism through the PPP. This is in part via reducing activity of glucose 6-phosphate dehydrogenase, the rate limiting enzyme in the PPP. Additionally, palbociclib enhances glutaminolysis to maintain mitochondrial respiration and sensitizes A549 cells to the glutaminase inhibitor, CB-839. Notably, the effects of palbociclib on both the PPP and glutamine utilization occur in an RB-dependent manner. CONCLUSIONS: Together, our data define the metabolic impact of palbociclib treatment in A549 cells and may support the targeting CDK4/6 inhibition in combination with glutaminase inhibitors in NSCLC patients with RB-proficient tumors.

3.
Breast Cancer Res Treat ; 160(1): 29-40, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27613609

RESUMO

PURPOSE: Human epidermal growth factor receptor-2 (HER2) has been implicated in the progression of multiple tumor types, including breast cancer, and many downstream effectors of HER2 signaling are primary regulators of cellular metabolism, including Ras and Akt. A key downstream metabolic target of Ras and Akt is the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 isozyme (PFKFB3), whose product, fructose-2,6-bisphosphate (F26BP), is a potent allosteric activator of a rate-limiting enzyme in glycolysis, 6-phosphofructo-1-kinase (PFK-1). We postulate that PFKFB3 may be regulated by HER2 and contribute to HER2-driven tumorigenicity. METHODS: Immunohistochemistry and Kaplan-Meier analysis of HER2+ patient samples investigated the relevance of PFKFB3 in HER2+ breast cancer. In vitro genetic and pharmacological inhibition of PFKFB3 was utilized to determine effects on HER2+ breast cancer cells, while HER2 antagonist treatment assessed the mechanistic regulation on PFKFB3 expression and glucose metabolism. Administration of a PFKFB3 inhibitor in a HER2-driven transgenic breast cancer model evaluated this potential therapeutic approach in vivo. RESULTS: PFKFB3 is elevated in human HER2+ breast cancer and high PFKFB3 transcript correlated with poorer progression-free (PFS) and distant metastatic-free (DFMS) survival. Constitutive HER2 expression led to elevated PFKFB3 expression and increased glucose metabolism, while inhibition of PFKFB3 suppressed glucose uptake, F26BP, glycolysis, and selectively decreased the growth of HER2-expressing breast cancer cells. In addition, treatment with lapatinib, an FDA-approved HER2 inhibitor, decreased PFKFB3 expression and glucose metabolism in HER2+ cells. In vivo administration of a PFKFB3 antagonist significantly suppressed the growth of HER2-driven breast tumors and decreased 18F-2-deoxy-glucose uptake. CONCLUSIONS: Taken together, these data support the potential clinical utility of PFKFB3 inhibitors as chemotherapeutic agents against HER2+ breast cancer.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Glucose/metabolismo , Fosfofrutoquinase-2/antagonistas & inibidores , Receptor ErbB-2/genética , Animais , Antineoplásicos/farmacologia , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Expressão Gênica , Glicólise , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Camundongos , Camundongos Transgênicos , Fosfofrutoquinase-2/genética , Fosfofrutoquinase-2/metabolismo , Prognóstico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor ErbB-2/metabolismo , Carga Tumoral
4.
J Biol Chem ; 289(13): 9440-8, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24515104

RESUMO

Estradiol (E2) administered to estrogen receptor-positive (ER(+)) breast cancer patients stimulates glucose uptake by tumors. Importantly, this E2-induced metabolic flare is predictive of the clinical effectiveness of anti-estrogens and, as a result, downstream metabolic regulators of E2 are expected to have utility as targets for the development of anti-breast cancer agents. The family of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases (PFKFB1-4) control glycolytic flux via their product, fructose-2,6-bisphosphate (F26BP), which activates 6-phosphofructo-1-kinase (PFK-1). We postulated that E2 might promote PFKFB3 expression, resulting in increased F26BP and glucose uptake. We demonstrate that PFKFB3 expression is highest in stage III lymph node metastases relative to normal breast tissues and that exposure of human MCF-7 breast cancer cells to E2 causes a rapid increase in [(14)C]glucose uptake and glycolysis that is coincident with an induction of PFKFB3 mRNA (via ER binding to its promoter), protein expression and the intracellular concentration of its product, F26BP. Importantly, selective inhibition of PFKFB3 expression and activity using siRNA or a PFKFB3 inhibitor markedly reduces the E2-mediated increase in F26BP, [(14)C]glucose uptake, and glycolysis. Furthermore, co-treatment of MCF-7 cells with the PFKFB3 inhibitor and the anti-estrogen ICI 182,780 synergistically induces apoptotic cell death. These findings demonstrate for the first time that the estrogen receptor directly promotes PFKFB3 mRNA transcription which, in turn, is required for the glucose metabolism and survival of breast cancer cells. Importantly, these results provide essential preclinical information that may allow for the ultimate design of combinatorial trials of PFKFB3 antagonists with anti-estrogen therapies in ER(+) stage IV breast cancer patients.


Assuntos
Estradiol/farmacologia , Glucose/metabolismo , Fosfofrutoquinase-2/metabolismo , Apoptose/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Neoplasias da Mama/patologia , Sobrevivência Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Estradiol/análogos & derivados , Receptor alfa de Estrogênio/metabolismo , Frutosedifosfatos/metabolismo , Fulvestranto , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Humanos , Metástase Linfática , Células MCF-7 , Fosfofrutoquinase-2/antagonistas & inibidores , Fosfofrutoquinase-2/genética , Elementos de Resposta/efeitos dos fármacos , Elementos de Resposta/genética
5.
Biol Chem ; 396(8): 937-47, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25872876

RESUMO

Enhanced glutamine metabolism is required for tumor cell growth and survival, which suggests that agents targeting glutaminolysis may have utility within anti-cancer therapies. Troglitazone, a PPARγ agonist, exhibits significant anti-tumor activity and can alter glutamine metabolism in multiple cell types. Therefore, we examined whether troglitazone would disrupt glutamine metabolism in tumor cells and whether its action was reliant on PPARγ activity. We found that troglitazone treatment suppressed glutamine uptake and the expression of the glutamine transporter, ASCT2, and glutaminase. In addition, troglitazone reduced 13C-glutamine incorporation into the TCA cycle, decreased [ATP], and resulted in an increase in reactive oxygen species (ROS). Further, troglitazone treatment decreased tumor cell growth, which was partially rescued with the addition of the TCA-intermediate, α-ketoglutarate, or the antioxidant N-acetylcysteine. Importantly, troglitazone's effects on glutamine uptake or viable cell number were found to be PPARγ-independent. In contrast, troglitazone caused a decrease in c-Myc levels, while the proteasomal inhibitor, MG132, rescued c-Myc, ASCT2 and GLS1 expression, as well as glutamine uptake and cell number. Lastly, combinatorial treatment of troglitazone and metformin resulted in a synergistic decrease in cell number. Therefore, characterizing new anti-tumor properties of previously approved FDA therapies supports the potential for repurposing of these agents.


Assuntos
Cromanos/farmacologia , Glutamina/metabolismo , PPAR gama/metabolismo , Tiazolidinedionas/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Neoplasias da Próstata/metabolismo , Troglitazona
6.
Endocr Relat Cancer ; 30(11)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37650685

RESUMO

Despite the successful combination of therapies improving survival of estrogen receptor α (ER+) breast cancer patients with metastatic disease, mechanisms for acquired endocrine resistance remain to be fully elucidated. The RNA binding protein HNRNPA2B1 (A2B1), a reader of N(6)-methyladenosine (m6A) in transcribed RNA, is upregulated in endocrine-resistant, ER+ LCC9 and LY2 cells compared to parental MCF-7 endocrine-sensitive luminal A breast cancer cells. The miRNA-seq transcriptome of MCF-7 cells overexpressing A2B1 identified the serine metabolic processes pathway. Increased expression of two key enzymes in the serine synthesis pathway (SSP), phosphoserine aminotransferase 1 (PSAT1) and phosphoglycerate dehydrogenase (PHGDH), correlates with poor outcomes in ER+ breast patients who received tamoxifen (TAM). We reported that PSAT1 and PHGDH were higher in LCC9 and LY2 cells compared to MCF-7 cells and their knockdown enhanced TAM sensitivity in these-resistant cells. Here we demonstrate that stable, modest overexpression of A2B1 in MCF-7 cells increased PSAT1 and PHGDH and endocrine resistance. We identified four miRNAs downregulated in MCF-7-A2B1 cells that directly target the PSAT1 3'UTR (miR-145-5p and miR-424-5p), and the PHGDH 3'UTR (miR-34b-5p and miR-876-5p) in dual luciferase assays. Lower expression of miR-145-5p and miR-424-5p in LCC9 and ZR-75-1-4-OHT cells correlated with increased PSAT1 and lower expression of miR-34b-5p and miR-876-5p in LCC9 and ZR-75-1-4-OHT cells correlated with increased PHGDH. Transient transfection of these miRNAs restored endocrine-therapy sensitivity in LCC9 and ZR-75-1-4-OHT cells. Overall, our data suggest a role for decreased A2B1-regulated miRNAs in endocrine resistance and upregulation of the SSP to promote tumor progression in ER+ breast cancer.


Assuntos
Neoplasias da Mama , MicroRNAs , Humanos , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Mama/patologia , Regiões 3' não Traduzidas , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , Mama/metabolismo , Células MCF-7 , Regulação Neoplásica da Expressão Gênica , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral
7.
Cell Oncol (Dordr) ; 46(6): 1659-1673, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37318751

RESUMO

BACKGROUND: Recent studies have uncovered the near-ubiquitous presence of microbes in solid tumors of diverse origins. Previous literature has shown the impact of specific bacterial species on the progression of cancer. We propose that local microbial dysbiosis enables certain cancer phenotypes through provisioning of essential metabolites directly to tumor cells. METHODS: 16S rDNA sequencing of 75 patient lung samples revealed the lung tumor microbiome specifically enriched for bacteria capable of producing methionine. Wild-type (WT) and methionine auxotrophic (metA mutant) E. coli cells were used to condition cell culture media and the proliferation of lung adenocarcinoma (LUAD) cells were measured using SYTO60 staining. Further, colony forming assay, Annexin V Staining, BrdU, AlamarBlue, western blot, qPCR, LINE microarray and subcutaneous injection with methionine modulated feed were used to analyze cellular proliferation, cell-cycle, cell death, methylation potential, and xenograft formation under methionine restriction. Moreover, C14-labeled glucose was used to illustrate the interplay between tumor cells and bacteria. RESULTS/DISCUSSION: Our results show bacteria found locally within the tumor microenvironment are enriched for methionine synthetic pathways, while having reduced S-adenosylmethionine metabolizing pathways. As methionine is one of nine essential amino acids that mammals are unable to synthesize de novo, we investigated a potentially novel function for the microbiome, supplying essential nutrients, such as methionine, to cancer cells. We demonstrate that LUAD cells can utilize methionine generated by bacteria to rescue phenotypes that would otherwise be inhibited due to nutrient restriction. In addition to this, with WT and metA mutant E. coli, we saw a selective advantage for bacteria with an intact methionine synthetic pathway to survive under the conditions induced by LUAD cells. These results would suggest that there is a potential bi-directional cross-talk between the local microbiome and adjacent tumor cells. In this study, we focused on methionine as one of the critical molecules, but we also hypothesize that additional bacterial metabolites may also be utilized by LUAD. Indeed, our radiolabeling data suggest that other biomolecules are shared between cancer cells and bacteria. Thus, modulating the local microbiome may have an indirect effect on tumor development, progression, and metastasis.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Animais , Humanos , Metionina/genética , Metionina/metabolismo , Escherichia coli/metabolismo , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/patologia , Racemetionina/metabolismo , Proliferação de Células/genética , S-Adenosilmetionina/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Mamíferos/metabolismo , Microambiente Tumoral
8.
Mol Cancer ; 11: 60, 2012 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-22917272

RESUMO

BACKGROUND: Constitutive activation of Ras in immortalized bronchial epithelial cells increases electron transport chain activity, oxygen consumption and tricarboxylic acid cycling through unknown mechanisms. We hypothesized that members of the Ras family may stimulate respiration by enhancing the expression of the Vb regulatory subunit of cytochrome c oxidase (COX). RESULTS: We found that the introduction of activated H-Ras(V12) into immortalized human bronchial epithelial cells increased eIF4E-dependent COX Vb protein expression simultaneously with an increase in COX activity and oxygen consumption. In support of the regulation of COX Vb expression by the Ras family, we also found that selective siRNA-mediated inhibition of K-Ras expression in A549 lung adenocarcinoma cells reduced COX Vb protein expression, COX activity, oxygen consumption and the steady-state concentration of ATP. We postulated that COX Vb-mediated activation of COX activity may be required for the anchorage-independent growth of A549 cells as soft agar colonies or as lung xenografts. We transfected the A549 cells with COX Vb small interfering or shRNA and observed a significant reduction of their COX activity, oxygen consumption, ATP and ability to grow in soft agar and as poorly differentiated tumors in athymic mice. CONCLUSION: Taken together, our findings indicate that the activation of Ras increases COX activity and mitochondrial respiration in part via up-regulation of COX Vb and that this regulatory subunit of COX may have utility as a Ras effector target for the development of anti-neoplastic agents.


Assuntos
Adenocarcinoma/enzimologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Neoplasias Pulmonares/enzimologia , Proteínas ras/metabolismo , Adenocarcinoma/química , Adenocarcinoma/genética , Adenocarcinoma de Pulmão , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/genética , Ativação Enzimática , Fator de Iniciação 4E em Eucariotos/metabolismo , Feminino , Humanos , Neoplasias Pulmonares/química , Neoplasias Pulmonares/genética , Camundongos , Camundongos Nus , Consumo de Oxigênio , RNA Interferente Pequeno/genética , Transplante Heterólogo
9.
J Transl Med ; 10: 95, 2012 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-22591674

RESUMO

BACKGROUND: T cell activation is associated with a rapid increase in intracellular fructose-2,6-bisphosphate (F2,6BP), an allosteric activator of the glycolytic enzyme, 6-phosphofructo-1-kinase. The steady state concentration of F2,6BP in T cells is dependent on the expression of the bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases (PFKFB1-4) and the fructose-2,6-bisphosphatase, TIGAR. Of the PFKFB family of enzymes, PFKFB3 has the highest kinase:bisphosphatase ratio and has been demonstrated to be required for T cell proliferation. A small molecule antagonist of PFKFB3, 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO), recently has been shown to reduce F2,6BP synthesis, glucose uptake and proliferation in transformed cells. We hypothesized that the induction of PFKFB3 expression may be required for the stimulation of glycolysis in T cells and that exposure to the PFKFB3 antagonist, 3PO, would suppress T cell activation. METHODS: We examined PFKFB1-4 and TIGAR expression and F2,6BP concentration in purified CD3+ T cells stimulated with microbead-conjugated agonist antibodies specific for CD3 and the co-stimulatory receptor, CD28. We then determined the effect of 3PO on anti-CD3/anti-CD28-induced T cell activation, F2,6BP synthesis, 2-[1-14C]-deoxy-d-glucose uptake, lactate secretion, TNF-α secretion and proliferation. Finally, we examined the effect of 3PO administration on the development of delayed type hypersensitivity to methylated BSA and on imiquimod-induced psoriasis in mice. RESULTS: We found that purified human CD3+ T cells express PFKFB2, PFKFB3, PFKFB4 and TIGAR, and that anti-CD3/anti-CD28 conjugated microbeads stimulated a >20-fold increase in F2,6BP with a coincident increase in protein expression of the PFKFB3 family member and a decrease in TIGAR protein expression. We then found that exposure to the PFKFB3 small molecule antagonist, 3PO (1-10 µM), markedly attenuated the stimulation of F2,6BP synthesis, 2-[1-14C]-deoxy-D-glucose uptake, lactate secretion, TNF-α secretion and T cell aggregation and proliferation. We examined the in vivo effect of 3PO on the development of delayed type hypersensitivity to methylated BSA and on imiquimod-induced psoriasis in mice and found that 3PO suppressed the development of both T cell-dependent models of immunity in vivo. CONCLUSIONS: Our data demonstrate that inhibition of the PFKFB3 kinase activity attenuates the activation of T cells in vitro and suppresses T cell dependent immunity in vivo and indicate that small molecule antagonists of PFKFB3 may prove effective as T cell immunosuppressive agents.


Assuntos
Ativação Linfocitária/efeitos dos fármacos , Fosfofrutoquinase-2/antagonistas & inibidores , Linfócitos T/imunologia , Animais , Antígenos CD/imunologia , Ensaio de Imunoadsorção Enzimática , Hipersensibilidade Tardia , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos BALB C , Reação em Cadeia da Polimerase em Tempo Real , Bibliotecas de Moléculas Pequenas
10.
Pharm Res ; 29(3): 847-55, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22033882

RESUMO

PURPOSE: To develop block copolymer micelles as an aqueous dosage form for a potent glycolytic enzyme inhibitor, 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO). METHODS: The micelles were prepared from poly(ethylene glycol)-poly(aspartate hydrazide) [PEG-p(HYD)] block copolymers to which 3PO was conjugated through an acid-labile hydrazone bond. The optimal micelle formulation was determined following the screening of block copolymer library modified with various aromatic and aliphatic pendant groups. Both physical drug entrapment and chemical drug conjugation methods were tested to maximize 3PO loading in the micelles during the screening. RESULTS: Particulate characterization showed that the PEG-p(HYD) block copolymers conjugated with 3PO (2.08∼2.21 wt.%) appeared the optimal polymer micelles. Block copolymer compositions greatly affected the micelle size, which was 38 nm and 259 nm when 5 kDa and 12 kDa PEG chains were used, respectively. 3PO release from the micelles was accelerated at pH 5.0, potentiating effective drug release in acidic tumor environments. The micelles retained biological activity of 3PO, inhibiting various cancer cells (Jurkat, He-La and LLC) in concentration ranges similar to free 3PO. CONCLUSION: A novel micelle formulation for controlled delivery of 3PO was successfully prepared.


Assuntos
Antineoplásicos/administração & dosagem , Preparações de Ação Retardada/química , Inibidores Enzimáticos/administração & dosagem , Neoplasias/tratamento farmacológico , Fosfofrutoquinase-2/antagonistas & inibidores , Polietilenoglicóis/química , Proteínas/química , Piridinas/administração & dosagem , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Glicólise/efeitos dos fármacos , Humanos , Camundongos , Micelas , Nanoconjugados/química , Neoplasias/enzimologia , Piridinas/química , Piridinas/farmacologia
11.
BMC Cancer ; 11: 515, 2011 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-22165955

RESUMO

BACKGROUND: We previously found that administration of an interleukin 2/diphtheria toxin conjugate (DAB/IL2; Denileukin Diftitox; ONTAK) to stage IV melanoma patients depleted CD4(+)CD25(HI)Foxp3(+) regulatory T cells and expanded melanoma-specific CD8(+) T cells. The goal of this study was to assess the clinical efficacy of DAB/IL2 in an expanded cohort of stage IV melanoma patients. METHODS: In a single-center, phase II trial, DAB/IL2 (12 µg/kg; 4 daily doses; 21 day cycles) was administered to 60 unresectable stage IV melanoma patients and response rates were assessed using a combination of 2-[(18)F]-fluoro-2-deoxy-glucose (FDG)-positron emission tomography (PET) and computed tomography (CT) imaging. RESULTS: After DAB/IL2 administration, 16.7% of the 60 patients had partial responses, 5% stable disease and 15% mixed responses. Importantly, 45.5% of the chemo/immuno-naïve sub-population (11/60 patients) experienced partial responses. One year survival was markedly higher in partial responders (80 ± 11.9%) relative to patients with progressive disease (23.7 ± 6.5%; p value < 0.001) and 40 ± 6.2% of the total DAB/IL2-treated population were alive at 1 year. CONCLUSIONS: These data support the development of multi-center, randomized trials of DAB/IL2 as a monotherapy and in combination with other immunotherapeutic agents for the treatment of stage IV melanoma. TRIAL REGISTRATION: NCT00299689.


Assuntos
Antineoplásicos/uso terapêutico , Toxina Diftérica/uso terapêutico , Interleucina-2/uso terapêutico , Melanoma/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Idoso , Feminino , Humanos , Kentucky , Masculino , Melanoma/patologia , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Proteínas Recombinantes de Fusão/uso terapêutico , Neoplasias Cutâneas/patologia , Análise de Sobrevida , Linfócitos T , Tomografia Computadorizada por Raios X
12.
Cancers (Basel) ; 13(16)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34439090

RESUMO

An elevated expression of phosphoserine aminotransferase 1 (PSAT1) has been observed in multiple tumor types and is associated with poorer clinical outcomes. Although PSAT1 is postulated to promote tumor growth through its enzymatic function within the serine synthesis pathway (SSP), its role in cancer progression has not been fully characterized. Here, we explore a putative non-canonical function of PSAT1 that contributes to lung tumor progression. Biochemical studies found that PSAT1 selectively interacts with pyruvate kinase M2 (PKM2). Amino acid mutations within a PKM2-unique region significantly reduced this interaction. While PSAT1 loss had no effect on cellular pyruvate kinase activity and PKM2 expression in non-small-cell lung cancer (NSCLC) cells, fractionation studies demonstrated that the silencing of PSAT1 in epidermal growth factor receptor (EGFR)-mutant PC9 or EGF-stimulated A549 cells decreased PKM2 nuclear translocation. Further, PSAT1 suppression abrogated cell migration in these two cell types whereas PSAT1 restoration or overexpression induced cell migration along with an elevated nuclear PKM2 expression. Lastly, the nuclear re-expression of the acetyl-mimetic mutant of PKM2 (K433Q), but not the wild-type, partially restored cell migration in PSAT1-silenced cells. Therefore, we conclude that, in response to EGFR activation, PSAT1 contributes to lung cancer cell migration, in part, by promoting nuclear PKM2 translocation.

13.
Endocr Relat Cancer ; 28(1): 27-37, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33112838

RESUMO

Estrogen receptor-positive breast cancer (ER+ BC) is the most common form of breast carcinoma accounting for approximately 70% of all diagnoses. Although ER-targeted therapies have improved survival outcomes for this BC subtype, a significant proportion of patients will ultimately develop resistance to these clinical interventions, resulting in disease recurrence. Phosphoserine aminotransferase 1 (PSAT1), an enzyme within the serine synthetic pathway (SSP), has been previously implicated in endocrine resistance. Therefore, we determined whether expression of SSP enzymes, PSAT1 or phosphoglycerate dehydrogenase (PHGDH), affects the response of ER+ BC to 4-hydroxytamoxifen (4-OHT) treatment. To investigate a clinical correlation between PSAT1, PHGDH, and endocrine resistance, we examined microarray data from ER+ patients who received tamoxifen as the sole endocrine therapy. We confirmed that higher PSAT1 and PHGDH expression correlates negatively with poorer outcomes in tamoxifen-treated ER+ BC patients. Next, we found that SSP enzyme expression and serine synthesis were elevated in tamoxifen-resistant compared to tamoxifen-sensitive ER+ BC cells in vitro. To determine relevance to endocrine sensitivity, we modified the expression of either PSAT1 or PHGDH in each cell type. Overexpression of PSAT1 in tamoxifen-sensitive MCF-7 cells diminished 4-OHT inhibition on cell proliferation. Conversely, silencing of either PSAT1 or PHGDH resulted in greater sensitivity to 4-OHT treatment in LCC9 tamoxifen-resistant cells. Likewise, the combination of a PHGDH inhibitor with 4-OHT decreased LCC9 cell proliferation. Collectively, these results suggest that overexpression of serine synthetic pathway enzymes contribute to tamoxifen resistance in ER+ BC, which can be targeted as a novel combinatorial treatment option.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Serina/metabolismo , Tamoxifeno/uso terapêutico , Feminino , Humanos , Tamoxifeno/farmacologia , Transfecção
14.
Cancer Lett ; 518: 152-168, 2021 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-34273466

RESUMO

Despite new combination therapies improving survival of breast cancer patients with estrogen receptor α (ER+) tumors, the molecular mechanisms for endocrine-resistant disease remain unresolved. Previously we demonstrated that expression of the RNA binding protein and N6-methyladenosine (m6A) reader HNRNPA2B1 (A2B1) is higher in LCC9 and LY2 tamoxifen (TAM)-resistant ERα breast cancer cells relative to parental TAM-sensitive MCF-7 cells. Here we report that A2B1 protein expression is higher in breast tumors than paired normal breast tissue. Modest stable overexpression of A2B1 in MCF-7 cells (MCF-7-A2B1 cells) resulted in TAM- and fulvestrant- resistance whereas knockdown of A2B1 in LCC9 and LY2 cells restored TAM and fulvestrant, endocrine-sensitivity. MCF-7-A2B1 cells gained hallmarks of TAM-resistant metastatic behavior: increased migration and invasion, clonogenicity, and soft agar colony size, which were attenuated by A2B1 knockdown in MCF-7-A2B1 and the TAM-resistant LCC9 and LY2 cells. MCF-7-A2B1, LCC9, and LY2 cells have a higher proportion of CD44+/CD24-/low cancer stem cells (CSC) compared to MCF-7 cells. MCF-7-A2B1 cells have increased ERα and reduced miR-222-3p that targets ERα. Like LCC9 cells, MCF-7-A2B1 have activated AKT and MAPK that depend on A2B1 expression and are growth inhibited by inhibitors of these pathways. These data support that targeting A2B1 could provide a complimentary therapeutic approach to reduce acquired endocrine resistance.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Células Endócrinas/metabolismo , Fulvestranto/farmacologia , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Tamoxifeno/farmacologia , Adenosina/análogos & derivados , Adenosina/metabolismo , Antígeno CD24/metabolismo , Linhagem Celular Tumoral , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Receptores de Hialuronatos/metabolismo , Células MCF-7 , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais/fisiologia
15.
Sci Adv ; 7(46): eabi8602, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34767443

RESUMO

Lactate accumulation is a hallmark of solid cancers and is linked to the immune suppressive phenotypes of tumor-infiltrating immune cells. We report herein that interleukin-4 (IL-4)­induced M0 → M2 macrophage polarization is accompanied by interchangeable glucose- or lactate-dependent tricarboxylic acid (TCA) cycle metabolism that directly drives histone acetylation, M2 gene transcription, and functional immune suppression. Lactate-dependent M0 → M2 polarization requires both mitochondrial pyruvate uptake and adenosine triphosphate­citrate lyase (ACLY) enzymatic activity. Notably, exogenous acetate rescues defective M2 polarization and histone acetylation following mitochondrial pyruvate carrier 1 (MPC1) inhibition or ACLY deficiency. Lastly, M2 macrophage­dependent tumor progression is impaired by conditional macrophage ACLY deficiency, further supporting a dominant role for glucose/lactate mitochondrial metabolism and histone acetylation in driving immune evasion. This work adds to our understanding of how mitochondrial metabolism affects macrophage functional phenotypes and identifies a unique tumor microenvironment (TME)­driven metabolic-epigenetic link in M2 macrophages.

16.
Clin Exp Metastasis ; 37(1): 187-197, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31630284

RESUMO

Breast cancer is the second leading cause of cancer-related deaths among women and 90% of these mortalities can be attributed to progression to metastatic disease. In particular, triple negative breast cancer (TNBC) is extremely aggressive and frequently metastasizes to multiple organs. As TNBCs are categorized by their lack of hormone receptors, these tumors are very heterogeneous and are immune to most targeted therapies. Metabolic changes are observed in the majority of TNBC and a large proportion upregulate enzymes within the serine synthesis pathway, including phosphoserine aminotransferase 1 (PSAT1). In this report, we investigate the role of PSAT1 in migration and invasion potential in a subset of TNBC cell types. We found that the expression of PSAT1 increases with TNBC clinical grade. We also demonstrate that suppression of PSAT1 or phosphoglycerate dehydrogenase (PHGDH) does not negatively impact cell proliferation in TNBC cells that are not dependent on de novo serine synthesis. However, we observed that suppression of PSAT1 specifically alters the F-actin cytoskeletal arrangement and morphology in these TNBC cell lines. In addition, suppression of PSAT1 inhibits motility and migration in these TNBC cell lines, which is not recapitulated upon loss of PHGDH. PSAT1 silencing also reduced the number of lung tumor nodules in a model of experimental metastasis; yet did not decrease anchorage-independent growth. Together, these results suggest that PSAT1 functions to drive migratory potential in promoting metastasis in select TNBC cells independent of its role in serine synthesis.


Assuntos
Mama/patologia , Neoplasias Pulmonares/secundário , Pulmão/patologia , Transaminases/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Animais , Mama/cirurgia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Gradação de Tumores , Invasividade Neoplásica/genética , Fosfoglicerato Desidrogenase/genética , Fosfoglicerato Desidrogenase/metabolismo , RNA Interferente Pequeno/metabolismo , Análise Serial de Tecidos , Transaminases/análise , Transaminases/genética , Neoplasias de Mama Triplo Negativas/cirurgia , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Cancers (Basel) ; 12(1)2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31963621

RESUMO

Dysregulated metabolism is a hallmark of cancer cells and is driven in part by specific genetic alterations in various oncogenes or tumor suppressors. The retinoblastoma protein (pRb) is a tumor suppressor that canonically regulates cell cycle progression; however, recent studies have highlighted a functional role for pRb in controlling cellular metabolism. Here, we report that loss of the gene encoding pRb (Rb1) in a transgenic mutant Kras-driven model of lung cancer results in metabolic reprogramming. Our tracer studies using bolus dosing of [U-13C]-glucose revealed an increase in glucose carbon incorporation into select glycolytic intermediates. Consistent with this result, Rb1-depleted tumors exhibited increased expression of key glycolytic enzymes. Interestingly, loss of Rb1 did not alter mitochondrial pyruvate oxidation compared to lung tumors with intact Rb1. Additional tracer studies using [U-13C,15N]-glutamine and [U-13C]-lactate demonstrated that loss of Rb1 did not alter glutaminolysis or utilization of circulating lactate within the tricarboxylic acid cycle (TCA) in vivo. Taken together, these data suggest that the loss of Rb1 promotes a glycolytic phenotype, while not altering pyruvate oxidative metabolism or glutamine anaplerosis in Kras-driven lung tumors.

18.
Sci Rep ; 9(1): 13705, 2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31548575

RESUMO

Stable isotope-resolved metabolomics (SIRM) provides information regarding the relative activity of numerous metabolic pathways and the contribution of nutrients to specific metabolite pools; however, SIRM experiments can be difficult to execute, and data interpretation is challenging. Furthermore, standardization of analytical procedures and workflows remain significant obstacles for widespread reproducibility. Here, we demonstrate the workflow of a typical SIRM experiment and suggest experimental controls and measures of cross-validation that improve data interpretation. Inhibitors of glycolysis and oxidative phosphorylation as well as mitochondrial uncouplers serve as pharmacological controls, which help define metabolic flux configurations that occur under well-controlled metabolic states. We demonstrate how such controls and time course labeling experiments improve confidence in metabolite assignments as well as delineate metabolic pathway relationships. Moreover, we demonstrate how radiolabeled tracers and extracellular flux analyses integrate with SIRM to improve data interpretation. Collectively, these results show how integration of flux methodologies and use of pharmacological controls increase confidence in SIRM data and provide new biological insights.


Assuntos
Espectrometria de Massas/métodos , Metabolômica/métodos , Fluxo de Trabalho , Interpretação Estatística de Dados , Marcação por Isótopo/métodos , Espectrometria de Massas/normas , Redes e Vias Metabólicas , Metabolômica/normas , Reprodutibilidade dos Testes
19.
Breast Cancer Res ; 10(5): R84, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18922152

RESUMO

INTRODUCTION: Glycolysis is increased in breast adenocarcinoma cells relative to adjacent normal cells in order to produce the ATP and anabolic precursors required for survival, growth and invasion. Glycolysis also serves as a key source of the reduced form of cytoplasmic nicotinamide adenine dinucleotide (NADH) necessary for the shuttling of electrons into mitochondria for electron transport. Lactate dehydrogenase (LDH) regulates glycolytic flux by converting pyruvate to lactate and has been found to be highly expressed in breast tumours. Aspartate aminotransferase (AAT) functions in tandem with malate dehydrogenase to transfer electrons from NADH across the inner mitochondrial membrane. Oxamate is an inhibitor of both LDH and AAT, and we hypothesised that oxamate may disrupt the metabolism and growth of breast adenocarcinoma cells. METHODS: We examined the effects of oxamate and the AAT inhibitor amino oxyacetate (AOA) on 13C-glucose utilisation, oxygen consumption, NADH and ATP in MDA-MB-231 cells. We then determined the effects of oxamate and AOA on normal human mammary epithelial cells and MDA-MB-231 breast adenocarcinoma cell proliferation, and on the growth of MDA-MB-231 cells as tumours in athymic BALB/c female mice. We ectopically expressed AAT in MDA-MB-231 cells and examined the consequences on the cytostatic effects of oxamate. Finally, we examined the effect of AAT-specific siRNA transfection on MDA-MB-231 cell proliferation. RESULTS: We found that oxamate did not attenuate cellular lactate production as predicted by its LDH inhibitory activity, but did have an anti-metabolic effect that was similar to AAT inhibition with AOA. Specifically, we found that oxamate and AOA decreased the flux of 13C-glucose-derived carbons into glutamate and uridine, both products of the mitochondrial tricarboxylic acid cycle, as well as oxygen consumption, a measure of electron transport chain activity. Oxamate and AOA also selectively suppressed the proliferation of MDA-MB-231 cells relative to normal human mammary epithelial cells and decreased the growth of MDA-MB-231 breast tumours in athymic mice. Importantly, we found that ectopic expression of AAT in MDA-MB-231 cells conferred resistance to the anti-proliferative effects of oxamate and that siRNA silencing of AAT decreased MDA-MB-231 cell proliferation. CONCLUSIONS: We conclude that AAT may be a valid molecular target for the development of anti-neoplastic agents.


Assuntos
Adenocarcinoma/tratamento farmacológico , Ácido Amino-Oxiacético/uso terapêutico , Antineoplásicos/uso terapêutico , Aspartato Aminotransferases/antagonistas & inibidores , Neoplasias da Mama/tratamento farmacológico , Proteínas de Neoplasias/antagonistas & inibidores , Ácido Oxâmico/uso terapêutico , Adenocarcinoma/enzimologia , Adenocarcinoma/patologia , Ácido Amino-Oxiacético/farmacologia , Animais , Antineoplásicos/farmacologia , Aspartato Aminotransferases/genética , Aspartato Aminotransferases/fisiologia , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral/enzimologia , Ciclo do Ácido Cítrico/efeitos dos fármacos , Citostáticos/farmacologia , Citostáticos/uso terapêutico , Sistemas de Liberação de Medicamentos , Feminino , Glicólise/efeitos dos fármacos , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , L-Lactato Desidrogenase/antagonistas & inibidores , L-Lactato Desidrogenase/genética , Lactato Desidrogenase 5 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/fisiologia , Ácido Oxâmico/farmacologia , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Proteínas Recombinantes de Fusão/antagonistas & inibidores , Ensaio Tumoral de Célula-Tronco , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Mol Endocrinol ; 20(1): 100-13, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16109738

RESUMO

Several factors have been identified in the transcriptional repression of the steroidogenic acute regulatory protein (StAR) gene promoter; yet, no associating corepressor complexes have been characterized for the mouse promoter in MA-10 mouse Leydig tumor cells. We now report that Sp3, CAGA element binding proteins, and a corepressor complex consisting of mSin3A, histone deacetylase (HDAC)1, and HDAC2 associates with a transcriptional repressor region within the mouse StAR promoter. 5'-Promoter deletion analysis localized the negative regulatory region between -180 and -150 bp upstream of the transcription start site, and mutations in both the CAGA and Sp binding elements were required to relieve the repression of basal StAR promoter activity. Protein-DNA binding analysis revealed Sp3 and specific CAGA element-binding protein(s) associated with the repressor region. Coimmunoprecipitation analysis identified the presence of the mSin3A, HDAC1, and HDAC2 corepressor complex in MA-10 cells. Furthermore, chromatin immunoprecipitation assays revealed Sp3, mSin3A, and HDAC1/2 association with the proximal region of the StAR promoter in situ. In addition, HDAC inhibition resulted in a dose-dependent activation of a mouse StAR reporter construct, whereas mutations within the repressor region diminished this effect by 44%. In sum, these data support a novel regulatory mechanism for transcriptional repression of the mouse StAR promoter by DNA binding of Sp3 and CAGA element-binding proteins, and association of the Sin3 corepressor complex exhibiting HDAC activity.


Assuntos
Histona Desacetilases/metabolismo , Fosfoproteínas/metabolismo , Proteínas Repressoras/metabolismo , Animais , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Regulação da Expressão Gênica , Genes Reporter , Histona Desacetilase 1 , Histona Desacetilase 2 , Inibidores de Histona Desacetilases , Ácidos Hidroxâmicos/farmacologia , Tumor de Células de Leydig , Masculino , Camundongos , Mutação , Fosfoproteínas/genética , Regiões Promotoras Genéticas , Ligação Proteica , RNA Mensageiro/metabolismo , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/genética , Complexo Correpressor Histona Desacetilase e Sin3 , Fator de Transcrição Sp3/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA