Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Nature ; 473(7345): 97-100, 2011 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-21478875

RESUMO

Whole-genome duplication (WGD), or polyploidy, followed by gene loss and diploidization has long been recognized as an important evolutionary force in animals, fungi and other organisms, especially plants. The success of angiosperms has been attributed, in part, to innovations associated with gene or whole-genome duplications, but evidence for proposed ancient genome duplications pre-dating the divergence of monocots and eudicots remains equivocal in analyses of conserved gene order. Here we use comprehensive phylogenomic analyses of sequenced plant genomes and more than 12.6 million new expressed-sequence-tag sequences from phylogenetically pivotal lineages to elucidate two groups of ancient gene duplications-one in the common ancestor of extant seed plants and the other in the common ancestor of extant angiosperms. Gene duplication events were intensely concentrated around 319 and 192 million years ago, implicating two WGDs in ancestral lineages shortly before the diversification of extant seed plants and extant angiosperms, respectively. Significantly, these ancestral WGDs resulted in the diversification of regulatory genes important to seed and flower development, suggesting that they were involved in major innovations that ultimately contributed to the rise and eventual dominance of seed plants and angiosperms.


Assuntos
Evolução Molecular , Genoma de Planta/genética , Magnoliopsida/classificação , Magnoliopsida/genética , Poliploidia , Genômica , Filogenia
2.
PLoS Genet ; 7(2): e1002007, 2011 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-21347285

RESUMO

Leaf-cutter ants are one of the most important herbivorous insects in the Neotropics, harvesting vast quantities of fresh leaf material. The ants use leaves to cultivate a fungus that serves as the colony's primary food source. This obligate ant-fungus mutualism is one of the few occurrences of farming by non-humans and likely facilitated the formation of their massive colonies. Mature leaf-cutter ant colonies contain millions of workers ranging in size from small garden tenders to large soldiers, resulting in one of the most complex polymorphic caste systems within ants. To begin uncovering the genomic underpinnings of this system, we sequenced the genome of Atta cephalotes using 454 pyrosequencing. One prediction from this ant's lifestyle is that it has undergone genetic modifications that reflect its obligate dependence on the fungus for nutrients. Analysis of this genome sequence is consistent with this hypothesis, as we find evidence for reductions in genes related to nutrient acquisition. These include extensive reductions in serine proteases (which are likely unnecessary because proteolysis is not a primary mechanism used to process nutrients obtained from the fungus), a loss of genes involved in arginine biosynthesis (suggesting that this amino acid is obtained from the fungus), and the absence of a hexamerin (which sequesters amino acids during larval development in other insects). Following recent reports of genome sequences from other insects that engage in symbioses with beneficial microbes, the A. cephalotes genome provides new insights into the symbiotic lifestyle of this ant and advances our understanding of host-microbe symbioses.


Assuntos
Formigas/fisiologia , Genoma de Inseto/genética , Folhas de Planta/fisiologia , Simbiose , Animais , Formigas/genética , Arginina/genética , Arginina/metabolismo , Sequência de Bases , Fungos/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Análise de Sequência de DNA , Serina Proteases/genética , Serina Proteases/metabolismo
3.
BMC Plant Biol ; 13: 13, 2013 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-23347749

RESUMO

BACKGROUND: Previous studies in basal angiosperms have provided insight into the diversity within the angiosperm lineage and helped to polarize analyses of flowering plant evolution. However, there is still not an experimental system for genetic studies among basal angiosperms to facilitate comparative studies and functional investigation. It would be desirable to identify a basal angiosperm experimental system that possesses many of the features found in existing plant model systems (e.g., Arabidopsis and Oryza). RESULTS: We have considered all basal angiosperm families for general characteristics important for experimental systems, including availability to the scientific community, growth habit, and membership in a large basal angiosperm group that displays a wide spectrum of phenotypic diversity. Most basal angiosperms are woody or aquatic, thus are not well-suited for large scale cultivation, and were excluded. We further investigated members of Aristolochiaceae for ease of culture, life cycle, genome size, and chromosome number. We demonstrated self-compatibility for Aristolochia elegans and A. fimbriata, and transformation with a GFP reporter construct for Saruma henryi and A. fimbriata. Furthermore, A. fimbriata was easily cultivated with a life cycle of just three months, could be regenerated in a tissue culture system, and had one of the smallest genomes among basal angiosperms. An extensive multi-tissue EST dataset was produced for A. fimbriata that includes over 3.8 million 454 sequence reads. CONCLUSIONS: Aristolochia fimbriata has numerous features that facilitate genetic studies and is suggested as a potential model system for use with a wide variety of technologies. Emerging genetic and genomic tools for A. fimbriata and closely related species can aid the investigation of floral biology, developmental genetics, biochemical pathways important in plant-insect interactions as well as human health, and various other features present in early angiosperms.


Assuntos
Aristolochia/genética , Aristolochia/fisiologia , Genoma de Planta/genética
4.
Nat Genet ; 36(12): 1268-74, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15531882

RESUMO

Salmonella enterica serovars often have a broad host range, and some cause both gastrointestinal and systemic disease. But the serovars Paratyphi A and Typhi are restricted to humans and cause only systemic disease. It has been estimated that Typhi arose in the last few thousand years. The sequence and microarray analysis of the Paratyphi A genome indicates that it is similar to the Typhi genome but suggests that it has a more recent evolutionary origin. Both genomes have independently accumulated many pseudogenes among their approximately 4,400 protein coding sequences: 173 in Paratyphi A and approximately 210 in Typhi. The recent convergence of these two similar genomes on a similar phenotype is subtly reflected in their genotypes: only 30 genes are degraded in both serovars. Nevertheless, these 30 genes include three known to be important in gastroenteritis, which does not occur in these serovars, and four for Salmonella-translocated effectors, which are normally secreted into host cells to subvert host functions. Loss of function also occurs by mutation in different genes in the same pathway (e.g., in chemotaxis and in the production of fimbriae).


Assuntos
Evolução Molecular , Variação Genética , Genoma Bacteriano , Mutação/genética , Salmonella paratyphi A/genética , Salmonella typhi/genética , Sequência de Bases , Biblioteca Gênica , Componentes Genômicos/genética , Humanos , Análise em Microsséries , Dados de Sequência Molecular , Pseudogenes/genética , Análise de Sequência de DNA , Especificidade da Espécie
5.
BMC Genomics ; 13: 212, 2012 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-22646920

RESUMO

BACKGROUND: The contribution of a gene to the fitness of a bacterium can be assayed by whether and to what degree the bacterium tolerates transposon insertions in that gene. We use this fact to compare the fitness of syntenic homologous genes among related Salmonella strains and thereby reveal differences not apparent at the gene sequence level. RESULTS: A transposon Tn5 derivative was used to construct mutants in Salmonella Typhimurium ATCC14028 (STM1) and Salmonella Typhi Ty2 (STY1), which were then grown in rich media. The locations of 234,152 and 53,556 integration sites, respectively, were mapped by sequencing. These data were compared to similar data available for a different Ty2 isolate (STY2) and essential genes identified in E. coli K-12 (ECO). Of 277 genes considered essential in ECO, all had syntenic homologs in STM1, STY1, and STY2, and all but nine genes were either devoid of transposon insertions or had very few. For three of these nine genes, part of the annotated gene lacked transposon integrations (yejM, ftsN and murB). At least one of the other six genes, trpS, had a potentially functionally redundant gene encoded elsewhere in Salmonella but not in ECO. An additional 165 genes were almost entirely devoid of transposon integrations in all three Salmonella strains examined, including many genes associated with protein and DNA synthesis. Four of these genes (STM14_1498, STM14_2872, STM14_3360, and STM14_5442) are not found in E. coli. Notable differences in the extent of gene selection were also observed among the three different Salmonella isolates. Mutations in hns, for example, were selected against in STM1 but not in the two STY strains, which have a defect in rpoS rendering hns nonessential. CONCLUSIONS: Comparisons among transposon integration profiles from different members of a species and among related species, all grown in similar conditions, identify differences in gene contributions to fitness among syntenic homologs. Further differences in fitness profiles among shared genes can be expected in other selective environments, with potential relevance for comparative systems biology.


Assuntos
Elementos de DNA Transponíveis , Escherichia coli/genética , Aptidão Genética , Salmonella typhi/genética , Salmonella typhimurium/genética , Genes Essenciais , Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala , Seleção Genética , Sintenia
6.
PLoS Genet ; 5(11): e1000715, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19936061

RESUMO

Maize is a major cereal crop and an important model system for basic biological research. Knowledge gained from maize research can also be used to genetically improve its grass relatives such as sorghum, wheat, and rice. The primary objective of the Maize Genome Sequencing Consortium (MGSC) was to generate a reference genome sequence that was integrated with both the physical and genetic maps. Using a previously published integrated genetic and physical map, combined with in-coming maize genomic sequence, new sequence-based genetic markers, and an optical map, we dynamically picked a minimum tiling path (MTP) of 16,910 bacterial artificial chromosome (BAC) and fosmid clones that were used by the MGSC to sequence the maize genome. The final MTP resulted in a significantly improved physical map that reduced the number of contigs from 721 to 435, incorporated a total of 8,315 mapped markers, and ordered and oriented the majority of FPC contigs. The new integrated physical and genetic map covered 2,120 Mb (93%) of the 2,300-Mb genome, of which 405 contigs were anchored to the genetic map, totaling 2,103.4 Mb (99.2% of the 2,120 Mb physical map). More importantly, 336 contigs, comprising 94.0% of the physical map ( approximately 1,993 Mb), were ordered and oriented. Finally we used all available physical, sequence, genetic, and optical data to generate a golden path (AGP) of chromosome-based pseudomolecules, herein referred to as the B73 Reference Genome Sequence version 1 (B73 RefGen_v1).


Assuntos
Genoma de Planta/genética , Zea mays/genética , Algoritmos , Sequência de Bases , Cromossomos Artificiais Bacterianos/genética , Cromossomos de Plantas/genética , Clonagem Molecular , Mapeamento de Sequências Contíguas , Marcadores Genéticos , Dados de Sequência Molecular , Fenômenos Ópticos , Mapeamento Físico do Cromossomo , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico
7.
Chromosoma ; 119(4): 381-9, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20195622

RESUMO

Over the last several years, the sea lamprey (Petromyzon marinus) has grown substantially as a model for understanding the evolutionary fundaments and capacity of vertebrate developmental and genome biology. Recent work on the lamprey genome has resulted in a preliminary assembly of the lamprey genome and led to the realization that nearly all somatic cell lineages undergo extensive programmed rearrangements. Here we describe the development of a bacterial artificial chromosome (BAC) resource for lamprey germline DNA and use sequence information from this resource to probe the subchromosomal structure of the lamprey genome. The arrayed germline BAC library represents approximately 10x coverage of the lamprey genome. Analyses of BAC-end sequences reveal that the lamprey genome possesses a high content of repetitive sequences (relative to human), which show strong clustering at the subchromosomal level. This pattern is not unexpected given that the sea lamprey genome is dispersed across a large number of chromosomes (n approximately 99) and suggests a low-copy DNA targeting strategy for efficiently generating informative paired-BAC-end linkages from highly repetitive genomes. This library therefore represents a new and biologically informed resource for understanding the structure of the lamprey genome and the biology of programmed genome rearrangement.


Assuntos
Cromatina/genética , Cromossomos Artificiais Bacterianos , DNA/química , Genoma , Células Germinativas , Petromyzon/genética , Análise de Sequência de DNA/métodos , Animais , Sequência de Bases , Cromossomos/genética , DNA/análise , Biblioteca Gênica , Rearranjo Gênico , Sequências Repetitivas de Ácido Nucleico
8.
Proc Natl Acad Sci U S A ; 105(39): 15094-9, 2008 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-18812508

RESUMO

Unicellular cyanobacteria have recently been recognized for their contributions to nitrogen fixation in marine environments, a function previously thought to be filled mainly by filamentous cyanobacteria such as Trichodesmium. To begin a systems level analysis of the physiology of the unicellular N(2)-fixing microbes, we have sequenced to completion the genome of Cyanothece sp. ATCC 51142, the first such organism. Cyanothece 51142 performs oxygenic photosynthesis and nitrogen fixation, separating these two incompatible processes temporally within the same cell, while concomitantly accumulating metabolic products in inclusion bodies that are later mobilized as part of a robust diurnal cycle. The 5,460,377-bp Cyanothece 51142 genome has a unique arrangement of one large circular chromosome, four small plasmids, and one linear chromosome, the first report of a linear element in the genome of a photosynthetic bacterium. On the 429,701-bp linear chromosome is a cluster of genes for enzymes involved in pyruvate metabolism, suggesting an important role for the linear chromosome in fermentative processes. The annotation of the genome was significantly aided by simultaneous global proteomic studies of this organism. Compared with other nitrogen-fixing cyanobacteria, Cyanothece 51142 contains the largest intact contiguous cluster of nitrogen fixation-related genes. We discuss the implications of such an organization on the regulation of nitrogen fixation. The genome sequence provides important information regarding the ability of Cyanothece 51142 to accomplish metabolic compartmentalization and energy storage, as well as how a unicellular bacterium balances multiple, often incompatible, processes in a single cell.


Assuntos
Cyanothece/genética , Genoma Bacteriano , Fixação de Nitrogênio/genética , Sequência de Bases , Cromossomos Bacterianos , Cyanothece/citologia , Cyanothece/metabolismo , Metabolismo Energético/genética , Fermentação/genética , Ordem dos Genes , Dados de Sequência Molecular , Proteômica , Ácido Pirúvico/metabolismo , Análise de Sequência de DNA
9.
PLoS Biol ; 5(7): e156, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17579514

RESUMO

The adult human intestine contains trillions of bacteria, representing hundreds of species and thousands of subspecies. Little is known about the selective pressures that have shaped and are shaping this community's component species, which are dominated by members of the Bacteroidetes and Firmicutes divisions. To examine how the intestinal environment affects microbial genome evolution, we have sequenced the genomes of two members of the normal distal human gut microbiota, Bacteroides vulgatus and Bacteroides distasonis, and by comparison with the few other sequenced gut and non-gut Bacteroidetes, analyzed their niche and habitat adaptations. The results show that lateral gene transfer, mobile elements, and gene amplification have played important roles in affecting the ability of gut-dwelling Bacteroidetes to vary their cell surface, sense their environment, and harvest nutrient resources present in the distal intestine. Our findings show that these processes have been a driving force in the adaptation of Bacteroidetes to the distal gut environment, and emphasize the importance of considering the evolution of humans from an additional perspective, namely the evolution of our microbiomes.


Assuntos
Bacteroides/genética , Evolução Molecular , Intestinos/microbiologia , Simbiose/genética , Adaptação Fisiológica , Bacteriófagos/genética , Bacteroides/fisiologia , Bacteroides/virologia , Conjugação Genética , Elementos de DNA Transponíveis , Ecossistema , Duplicação Gênica , Transferência Genética Horizontal , Variação Genética , Genoma Bacteriano , Humanos , Dados de Sequência Molecular , Filogenia , Polissacarídeos Bacterianos/biossíntese , Polissacarídeos Bacterianos/genética , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Especificidade da Espécie
10.
BMC Genomics ; 10: 205, 2009 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-19405965

RESUMO

BACKGROUND: The entomopathogenic nematode Heterorhabditis bacteriophora and its symbiotic bacterium, Photorhabdus luminescens, are important biological control agents of insect pests. This nematode-bacterium-insect association represents an emerging tripartite model for research on mutualistic and parasitic symbioses. Elucidation of mechanisms underlying these biological processes may serve as a foundation for improving the biological control potential of the nematode-bacterium complex. This large-scale expressed sequence tag (EST) analysis effort enables gene discovery and development of microsatellite markers. These ESTs will also aid in the annotation of the upcoming complete genome sequence of H. bacteriophora. RESULTS: A total of 31,485 high quality ESTs were generated from cDNA libraries of the adult H. bacteriophora TTO1 strain. Cluster analysis revealed the presence of 3,051 contigs and 7,835 singletons, representing 10,886 distinct EST sequences. About 72% of the distinct EST sequences had significant matches (E value < 1e-5) to proteins in GenBank's non-redundant (nr) and Wormpep190 databases. We have identified 12 ESTs corresponding to 8 genes potentially involved in RNA interference, 22 ESTs corresponding to 14 genes potentially involved in dauer-related processes, and 51 ESTs corresponding to 27 genes potentially involved in defense and stress responses. Comparison to ESTs and proteins of free-living nematodes led to the identification of 554 parasitic nematode-specific ESTs in H. bacteriophora, among which are those encoding F-box-like/WD-repeat protein theromacin, Bax inhibitor-1-like protein, and PAZ domain containing protein. Gene Ontology terms were assigned to 6,685 of the 10,886 ESTs. A total of 168 microsatellite loci were identified with primers designable for 141 loci. CONCLUSION: A total of 10,886 distinct EST sequences were identified from adult H. bacteriophora cDNA libraries. BLAST searches revealed ESTs potentially involved in parasitism, RNA interference, defense responses, stress responses, and dauer-related processes. The putative microsatellite markers identified in H. bacteriophora ESTs will enable genetic mapping and population genetic studies. These genomic resources provide the material base necessary for genome annotation, microarray development, and in-depth gene functional analysis.


Assuntos
Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica , Rhabditoidea/genética , Animais , Análise por Conglomerados , DNA de Helmintos/genética , Biblioteca Gênica , Genoma Helmíntico , Repetições de Microssatélites , Análise de Sequência de DNA
11.
Methods Mol Biol ; 533: 13-32, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19277564

RESUMO

Complementary DNA (cDNA) sequencing can be used to sample an organism's transcriptome, and the generated EST sequences can be used for a variety of purposes. They are especially important for enhancing the utility of a genome sequence or for providing a gene catalog for a genome that has not or will not be sequenced. In planning and executing a cDNA project, several criteria must be considered. One should clearly define the project purpose, including organism tissue(s) choice, whether those tissues should be pooled, ability to acquire adequate amounts of clean and well-preserved tissue, choice of type(s) of library, and construction of a library (or libraries) that is compatible with project goals. In addition, one must possess the skills to construct the library (or libraries), keeping in mind the number of clones that will be necessary to meet the project requirements. If one is inexperienced in cDNA library construction, it might be wise to outsource the library production and/or sequence and analysis to a sequencing center or to a company that specializes in those activities. One should also be aware that new sequencing platforms are being marketed that may offer simpler protocols that can produce cDNA data in a more rapid and economical manner. Of course, the bioinformatics tools will have to be in place to de-convolute and aid in data analysis for these newer technologies. Possible funding sources for these projects include well-justified grant proposals, private funding, and/or collaborators with available funds.


Assuntos
Etiquetas de Sequências Expressas , Técnicas Genéticas , Algoritmos , Ancylostoma/metabolismo , Animais , Clonagem Molecular , DNA Complementar/metabolismo , Evolução Molecular , Biblioteca Gênica , Genoma , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/metabolismo , Strongyloides/metabolismo
12.
Genetics ; 177(2): 1173-92, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17660568

RESUMO

We have sequenced five distinct mitochondrial genomes in maize: two fertile cytotypes (NA and the previously reported NB) and three cytoplasmic-male-sterile cytotypes (CMS-C, CMS-S, and CMS-T). Their genome sizes range from 535,825 bp in CMS-T to 739,719 bp in CMS-C. Large duplications (0.5-120 kb) account for most of the size increases. Plastid DNA accounts for 2.3-4.6% of each mitochondrial genome. The genomes share a minimum set of 51 genes for 33 conserved proteins, three ribosomal RNAs, and 15 transfer RNAs. Numbers of duplicate genes and plastid-derived tRNAs vary among cytotypes. A high level of sequence conservation exists both within and outside of genes (1.65-7.04 substitutions/10 kb in pairwise comparisons). However, sequence losses and gains are common: integrated plastid and plasmid sequences, as well as noncoding "native" mitochondrial sequences, can be lost with no phenotypic consequence. The organization of the different maize mitochondrial genomes varies dramatically; even between the two fertile cytotypes, there are 16 rearrangements. Comparing the finished shotgun sequences of multiple mitochondrial genomes from the same species suggests which genes and open reading frames are potentially functional, including which chimeric ORFs are candidate genes for cytoplasmic male sterility. This method identified the known CMS-associated ORFs in CMS-S and CMS-T, but not in CMS-C.


Assuntos
Fertilidade/genética , Genes de Plantas/genética , Genoma Mitocondrial , Infertilidade/genética , Zea mays/genética , Sequência de Bases , Sequência Conservada , Rearranjo Gênico , Proteínas Mitocondriais/genética , Dados de Sequência Molecular , Fases de Leitura Aberta , RNA Ribossômico/genética , RNA de Transferência/genética
14.
Nat Commun ; 8: 15451, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28508897

RESUMO

Biomphalaria snails are instrumental in transmission of the human blood fluke Schistosoma mansoni. With the World Health Organization's goal to eliminate schistosomiasis as a global health problem by 2025, there is now renewed emphasis on snail control. Here, we characterize the genome of Biomphalaria glabrata, a lophotrochozoan protostome, and provide timely and important information on snail biology. We describe aspects of phero-perception, stress responses, immune function and regulation of gene expression that support the persistence of B. glabrata in the field and may define this species as a suitable snail host for S. mansoni. We identify several potential targets for developing novel control measures aimed at reducing snail-mediated transmission of schistosomiasis.


Assuntos
Biomphalaria/genética , Biomphalaria/parasitologia , Genoma , Esquistossomose mansoni/transmissão , Comunicação Animal , Animais , Biomphalaria/imunologia , Elementos de DNA Transponíveis , Evolução Molecular , Água Doce , Regulação da Expressão Gênica , Interações Hospedeiro-Parasita , Feromônios , Proteoma , Schistosoma mansoni , Análise de Sequência de DNA , Estresse Fisiológico
15.
Int J Parasitol ; 36(7): 829-39, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16697384

RESUMO

The heartworm Dirofilaria immitis is a filarial parasitic nematode infecting dogs and other mammals worldwide causing fatal complications. Here, we present the first large-scale survey of the adult heartworm transcriptome by generation and analysis of 4005 expressed sequence tags, identifying about 1800 genes and expanding the available sequence information for the parasite significantly. Brugia malayi genomic data offered the most valuable information to interpret heartworm genes, with about 70% of D. immitis genes showing significant similarities to the assembly. Comparative genomic analyses revealed both genes common to metazoans or nematodes and genes specific to filarial parasites that may relate to parasitism. Characterization of abundant transcripts suggested important roles for genes involved in energy generation and antioxidant defense in adults. In particular, we proposed that adult heartworm likely adopted an anaerobic electron transfer-based energy generation system distinct from the aerobic pathway utilized by its mammalian host, making it a promising target in developing next generation macrofilaricides and other treatments. Our survey provided novel insights into the D. immitis transcriptome and laid a foundation for further comparative studies on biology, parasitism and evolution within the phylum Nematoda.


Assuntos
Dirofilaria immitis/genética , Genes de Helmintos , Animais , Sequência de Bases , Brugia Malayi/genética , Transporte de Elétrons/genética , Etiquetas de Sequências Expressas , Biblioteca Gênica , Genoma Helmíntico , Dados de Sequência Molecular , Fases de Leitura Aberta/genética , Análise de Sequência de DNA , Especificidade da Espécie
16.
Nucleic Acids Res ; 32(Database issue): D423-6, 2004 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-14681448

RESUMO

Nematode.net (www.nematode.net) is a web- accessible resource for investigating gene sequences from nematode genomes. The database is an outgrowth of the parasitic nematode EST project at Washington University's Genome Sequencing Center (GSC), St Louis. A sister project at the University of Edinburgh and the Sanger Institute is also underway. More than 295,000 ESTs have been generated from >30 nematodes other than Caenorhabditis elegans including key parasites of humans, animals and plants. Nematode.net currently provides NemaGene EST cluster consensus sequence, enhanced online BLAST search tools, functional classifications of cluster sequences and comprehensive information concerning the ongoing generation of nematode genome data. The long-term goal of nematode.net is to provide the scientific community with the highest quality sequence information and tools for studying these diverse species.


Assuntos
Biologia Computacional , Bases de Dados Genéticas , Nematoides/genética , Parasitos/genética , Animais , Etiquetas de Sequências Expressas , Genes de Helmintos , Genoma , Genômica , Armazenamento e Recuperação da Informação , Internet , Nematoides/fisiologia , Interface Usuário-Computador
17.
BMC Genomics ; 6: 58, 2005 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-15854223

RESUMO

BACKGROUND: Hookworms, infecting over one billion people, are the mostly closely related major human parasites to the model nematode Caenorhabditis elegans. Applying genomics techniques to these species, we analyzed 3,840 and 3,149 genes from Ancylostoma caninum and A. ceylanicum. RESULTS: Transcripts originated from libraries representing infective L3 larva, stimulated L3, arrested L3, and adults. Most genes are represented in single stages including abundant transcripts like hsp-20 in infective L3 and vit-3 in adults. Over 80% of the genes have homologs in C. elegans, and nearly 30% of these were with observable RNA interference phenotypes. Homologies were identified to nematode-specific and clade V specific gene families. To study the evolution of hookworm genes, 574 A. caninum/A. ceylanicum orthologs were identified, all of which were found to be under purifying selection with distribution ratios of nonsynonymous to synonymous amino acid substitutions similar to that reported for C. elegans/C. briggsae orthologs. The phylogenetic distance between A. caninum and A. ceylanicum is almost identical to that for C. elegans/C. briggsae. CONCLUSION: The genes discovered should substantially accelerate research toward better understanding of the parasites' basic biology as well as new therapies including vaccines and novel anthelmintics.


Assuntos
Ancylostoma/genética , Genoma , Genômica/métodos , Animais , Anti-Helmínticos/farmacologia , Caenorhabditis elegans , Análise por Conglomerados , Biologia Computacional , Mapeamento de Sequências Contíguas , DNA Complementar/metabolismo , Etiquetas de Sequências Expressas , Biblioteca Gênica , Infecções por Uncinaria/parasitologia , Humanos , Família Multigênica , Fases de Leitura Aberta , Filogenia , RNA/metabolismo , Interferência de RNA , RNA Mensageiro/metabolismo , Especificidade da Espécie
18.
Diabetes ; 51(7): 1997-2004, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12086925

RESUMO

Over the past 5 years, microarrays have greatly facilitated large-scale analysis of gene expression levels. Although these arrays were not specifically geared to represent tissues and pathways known to be affected by diabetes, they have been used in both type 1 and type 2 diabetes research. To prepare a tool that is particularly useful in the study of type 1 diabetes, we have assembled a nonredundant set of 3,400 clones representing genes expressed in the mouse pancreas or pathways known to be affected by diabetes. We have demonstrated the usefulness of this clone set by preparing a cDNA glass microarray, the PancChip, and using it to analyze pancreatic gene expression from embryonic day 14.5 through adulthood in mice. The clone set and corresponding array are useful resources for diabetes research.


Assuntos
Diabetes Mellitus/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Genômica , Ilhotas Pancreáticas/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas/genética , Projetos de Pesquisa , Adulto , Clonagem Molecular , Embrião de Mamíferos , Humanos , Recém-Nascido
19.
Diabetes ; 52(7): 1604-10, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12829622

RESUMO

The Endocrine Pancreas Consortium was formed in late 1999 to derive and sequence cDNA libraries enriched for rare transcripts expressed in the mammalian endocrine pancreas. Over the past 3 years, the Consortium has generated 20 cDNA libraries from mouse and human pancreatic tissues and deposited >150,000 sequences into the public expressed sequence tag databases. A special effort was made to enrich for cDNAs from the endocrine pancreas by constructing libraries from isolated islets. In addition, we constructed a library in which fetal pancreas from Neurogenin 3 null mice, which consists of only exocrine and duct cells, was subtracted from fetal wild-type pancreas to enrich for the transcripts from the endocrine compartment. Sequence analysis showed that these clones cluster into 9,464 assembly groups (approximating unique transcripts) for the mouse and 13,910 for the human sequences. Of these, >4,300 were unique to Consortium libraries. We have assembled a core clone set containing one cDNA for each assembly group for the mouse and have constructed the corresponding microarray, termed "PancChip 4.0," which contains >9,000 nonredundant elements. We show that this PancChip is highly enriched for genes expressed in the endocrine pancreas. The mouse and human clone sets and corresponding arrays will be important resources for diabetes research.


Assuntos
Ilhotas Pancreáticas/fisiologia , Transcrição Gênica , Animais , Sequência de Bases , DNA Complementar/genética , Etiquetas de Sequências Expressas , Biblioteca Gênica , Humanos , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas/genética , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico
20.
Genome Announc ; 3(3)2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25953173

RESUMO

Tolypothrix sp. PCC 7601 is a freshwater filamentous cyanobacterium with complex responses to environmental conditions. Here, we present its 9.96-Mbp draft genome sequence, containing 10,065 putative protein-coding sequences, including 305 predicted two-component system proteins and 27 putative phytochrome-class photoreceptors, the most such proteins in any sequenced genome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA