Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur Radiol ; 34(3): 1895-1904, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37650968

RESUMO

OBJECTIVES: To compare clinical image quality and perceived impact on diagnostic interpretation of chest CT findings between ultra-high-resolution photon-counting CT (UHR-PCCT) and conventional high-resolution energy-integrating-detector CT (HR-EIDCT) using visual grading analysis (VGA) scores. MATERIALS AND METHODS: Fifty patients who underwent a UHR-PCCT (matrix 512 × 512, 768 × 768, or 1024 × 1024; FOV average 275 × 376 mm, 120 × 0.2 mm; focal spot size 0.6 × 0.7 mm) between November 2021 and February 2022 and with a previous HR-EIDCT within the last 14 months were included. Four readers evaluated central and peripheral airways, lung vasculature, nodules, ground glass opacities, inter- and intralobular lines, emphysema, fissures, bullae/cysts, and air trapping on PCCT (0.4 mm) and conventional EIDCT (1 mm) via side-by-side reference scoring using a 5-point diagnostic quality score. The median VGA scores were compared and tested using one-sample Wilcoxon signed rank tests with hypothesized median values of 0 (same visibility) and 2 (better visibility on PCCT with impact on diagnostic interpretation) at a 2.5% significance level. RESULTS: Almost all lung structures had significantly better visibility on PCCT compared to EIDCT (p < 0.025; exception for ground glass nodules (N = 2/50 patients, p = 0.157)), with the highest scores seen for peripheral airways, micronodules, inter- and intralobular lines, and centrilobular emphysema (mean VGA > 1). Although better visibility, a perceived difference in diagnostic interpretation could not be demonstrated, since the median VGA was significantly different from 2. CONCLUSION: UHR-PCCT showed superior visibility compared to HR-EIDCT for central and peripheral airways, lung vasculature, fissures, ground glass opacities, macro- and micronodules, inter- and intralobular lines, paraseptal and centrilobular emphysema, bullae/cysts, and air trapping. CLINICAL RELEVANCE STATEMENT: UHR-PCCT has emerged as a promising technique for thoracic imaging, offering improved spatial resolution and lower radiation dose. Implementing PCCT into daily practice may allow better visibility of multiple lung structures and optimization of scan protocols for specific pathology. KEY POINTS: • The aim of this study was to verify if the higher spatial resolution of UHR-PCCT would improve the visibility and detection of certain lung structures and abnormalities. • UHR-PCCT was judged to have superior clinical image quality compared to conventional HR-EIDCT in the evaluation of the lungs. UHR-PCCT showed better visibility for almost all tested lung structures (except for ground glass nodules). • Despite superior image quality, the readers perceived no significant impact on the diagnostic interpretation of the studied lung structures and abnormalities.


Assuntos
Cistos , Pneumopatias , Enfisema Pulmonar , Humanos , Enfisema Pulmonar/diagnóstico por imagem , Vesícula , Imagens de Fantasmas , Pulmão/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Fótons
2.
Eur Radiol ; 34(10): 6309-6319, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38546790

RESUMO

OBJECTIVES: Evaluate microcalcification detectability in digital breast tomosynthesis (DBT) and synthetic 2D mammography (SM) for different acquisition setups using a virtual imaging trial (VIT) approach. MATERIALS AND METHODS: Medio-lateral oblique (MLO) DBT acquisitions on eight patients were performed at twice the automatic exposure controlled (AEC) dose. The noise was added to the projections to simulate a given dose trajectory. Virtual microcalcification models were added to a given projection set using an in-house VIT framework. Three setups were evaluated: (1) standard acquisition with 25 projections at AEC dose, (2) 25 projections with a convex dose distribution, and (3) sparse setup with 13 projections, every second one over the angular range. The total scan dose and angular range remained constant. DBT volume reconstruction and synthetic mammography image generation were performed using a Siemens prototype algorithm. Lesion detectability was assessed through a Jackknife-alternative free-response receiver operating characteristic (JAFROC) study with six observers. RESULTS: For DBT, the area under the curve (AUC) was 0.97 ± 0.01 for the standard, 0.95 ± 0.02 for the convex, and 0.89 ± 0.03 for the sparse setup. There was no significant difference between standard and convex dose distributions (p = 0.309). Sparse projections significantly reduced detectability (p = 0.001). Synthetic images had a higher AUC with the convex setup, though not significantly (p = 0.435). DBT required four times more reading time than synthetic mammography. DISCUSSION: A convex setup did not significantly improve detectability in DBT compared to the standard setup. Synthetic images exhibited a non-significant increase in detectability with the convex setup. Sparse setup significantly reduced detectability in both DBT and synthetic mammography. CLINICAL RELEVANCE STATEMENT: This virtual imaging trial study allowed the design and efficient testing of different dose distribution trajectories with real mammography images, using a dose-neutral protocol. KEY POINTS: • In DBT, a convex dose distribution did not increase the detectability of microcalcifications compared to the current standard setup but increased detectability for the SM images. • A sparse setup decreased microcalcification detectability in both DBT and SM images compared to the convex and current clinical setups. • Optimal microcalcification cluster detection in the system studied was achieved using either the standard or convex dose setting, with the default number of projections.


Assuntos
Neoplasias da Mama , Calcinose , Mamografia , Humanos , Mamografia/métodos , Feminino , Calcinose/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Algoritmos , Intensificação de Imagem Radiográfica/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Pessoa de Meia-Idade
3.
Pediatr Radiol ; 53(5): 929-941, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36580101

RESUMO

BACKGROUND: Postmortem fetal magnetic resonance imaging (MRI) has been on the rise since it was proven to be a good alternative to conventional autopsy. Since the fetal brain is sensitive to postmortem changes, extensive tissue fixation is required for macroscopic and microscopic assessment. Estimation of brain maceration on MRI, before autopsy, may optimize histopathological resources. OBJECTIVE: The aim of the study is to develop an MRI-based postmortem fetal brain maceration score and to correlate it with brain maceration as assessed by autopsy. MATERIALS AND METHODS: This retrospective single-center study includes 79 fetuses who had postmortem MRI followed by autopsy. Maceration was scored on MRI on a numerical severity scale, based on our brain-specific maceration score and the whole-body score of Montaldo. Additionally, maceration was scored on histopathology with a semiquantitative severity scale. Both the brain-specific and the whole-body maceration imaging scores were correlated with the histopathological maceration score. Intra- and interobserver agreements were tested for the brain-specific maceration score. RESULTS: The proposed brain-specific maceration score correlates well with fetal brain maceration assessed by autopsy (τ = 0.690), compared to a poorer correlation of the whole-body method (τ = 0.452). The intra- and interobserver agreement was excellent (correlation coefficients of 0.943 and 0.864, respectively). CONCLUSION: We present a brain-specific postmortem MRI maceration score that correlates well with the degree of fetal brain maceration seen at histopathological exam. The score is reliably reproduced by different observers with different experience.


Assuntos
Morte Fetal , Mudanças Depois da Morte , Feminino , Humanos , Autopsia/métodos , Estudos Retrospectivos , Feto/diagnóstico por imagem , Feto/patologia , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem
4.
Eur Radiol ; 32(7): 4437-4445, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35238969

RESUMO

OBJECTIVES: To determine the accuracy of scoutless, fixed-dose ultra-low-dose (ULD) CT compared to standard-dose (SD) CT for pulmonary nodule detection and semi-automated nodule measurement, across different patient sizes. METHODS: Sixty-three patients underwent ULD and SD CT. Two readers examined all studies visually and with computer-aided detection (CAD). Nodules detected on SD CT were included in the reference standard by consensus and stratified into 4 categories (nodule category, NODCAT) from the Dutch-Belgian Lung Cancer Screening trial (NELSON). Effects of NODCAT and patient size on nodule detection were determined. For each nodule, volume and diameter were compared between both scans. RESULTS: The reference standard comprised 173 nodules. For both readers, detection rates on ULD versus SD CT were not significantly different for NODCAT 3 and 4 nodules > 50 mm3 (reader 1: 93% versus 89% (p = 0.257); reader 2: 96% versus 98% (p = 0.317)). For NODCAT 1 and 2 nodules < 50 mm3, detection rates on ULD versus SD CT dropped significantly (reader 1: 66% versus 80% (p = 0.023); reader 2: 77% versus 87% (p = 0.039)). Body mass index and chest circumference did not influence nodule detectability (p = 0.229 and p = 0.362, respectively). Calculated volumes and diameters were smaller on ULD CT (p < 0.0001), without altering NODCAT (84% agreement). CONCLUSIONS: Scoutless ULD CT reliably detects solid lung nodules with a clinically relevant volume (> 50 mm3) in lung cancer screening, irrespective of patient size. Since detection rates were lower compared to SD CT for nodules < 50 mm3, its use for lung metastasis detection should be considered on a case-by-case basis. KEY POINTS: • Detection rates of pulmonary nodules > 50 mm3are not significantly different between scoutless ULD and SD CT (i.e. volumes clinically relevant in lung cancer screening based on the NELSON trial), but were different for the detection of nodules < 50 mm3(i.e. volumes still potentially relevant in lung metastasis screening). • Calculated nodule volumes were on average 0.03 mL or 9% smaller on ULD CT, which is below the 20-25% interscan variability previously reported with software-based volumetry. • Even though a scoutless, fixed-dose ULD CT protocol was used (CTDIvol0.15 mGy), pulmonary nodule detection was not influenced by patient size.


Assuntos
Neoplasias Pulmonares , Nódulos Pulmonares Múltiplos , Detecção Precoce de Câncer/métodos , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Nódulos Pulmonares Múltiplos/diagnóstico por imagem , Estudos Prospectivos , Doses de Radiação , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos
5.
Eur Radiol ; 32(2): 806-814, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34331118

RESUMO

OBJECTIVES: This study was designed to compare the detection of subtle lesions (calcification clusters or masses) when using the combination of digital breast tomosynthesis (DBT) and synthetic mammography (SM) with digital mammography (DM) alone or combined with DBT. METHODS: A set of 166 cases without cancer was acquired on a DBT mammography system. Realistic subtle calcification clusters and masses in the DM images and DBT planes were digitally inserted into 104 of the acquired cases. Three study arms were created: DM alone, DM with DBT and SM with DBT. Five mammographic readers located the centre of any lesion within the images that should be recalled for further investigation and graded their suspiciousness. A JAFROC figure of merit (FoM) and lesion detection fraction (LDF) were calculated for each study arm. The visibility of the lesions in the DBT images was compared with SM and DM images. RESULTS: For calcification clusters, there were no significant differences (p > 0.075) in FoM or LDF. For masses, the FoM and LDF were significantly improved in the arms using DBT compared to DM alone (p < 0.001). On average, both calcification clusters and masses were more visible on DBT than on DM and SM images. CONCLUSIONS: This study demonstrated that masses were detected better with DBT than with DM alone and there was no significant difference (p = 0.075) in LDF between DM&DBT and SM&DBT for calcifications clusters. Our results support previous studies that it may be acceptable to not acquire digital mammography alongside tomosynthesis for subtle calcification clusters and ill-defined masses. KEY POINTS: • The detection of masses was significantly better using DBT than with digital mammography alone. • The detection of calcification clusters was not significantly different between digital mammography and synthetic 2D images combined with tomosynthesis. • Our results support previous studies that it may be acceptable to not acquire digital mammography alongside tomosynthesis for subtle calcification clusters and ill-defined masses for the imaging technology used.


Assuntos
Neoplasias da Mama , Calcinose , Neoplasias , Mama/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Calcinose/diagnóstico por imagem , Feminino , Humanos , Mamografia
6.
Eur J Radiol ; 177: 111540, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38852327

RESUMO

PURPOSE: To investigate the impact of adding digital breast tomosynthesis (DBT) to full field digital mammography (FFDM) in screening asymptomatic women with an elevated breast cancer life time risk (BCLTR) but without known genetic mutation. METHODS: This IRB-approved single-institution multi-reader study on prospectively acquired FFDM + DBT images included 429 asymptomatic women (39-69y) with an elevated BC risk on their request form. The BCLTR was calculated for each patient using the IBISrisk calculator v8.0b. The screening protocol and reader study consisted of 4-view FFDM + DBT, which were read by four independent radiologists using the BI-RADS lexicon. Standard of care (SOC) included ultrasound (US) and magnetic resonance imaging (MRI) for women with > 30 % BCLTR. Breast cancer detection rate (BCDR), sensitivity and positive predictive value were assessed for FFDM and FFDM + DBT and detection outcomes were compared with McNemar-test. RESULTS: In total 7/429 women in this clinically elevated breast cancer risk group were diagnosed with BC using SOC (BCDR 16.3/1000) of which 4 were detected with FFDM. Supplemental DBT did not detect additional cancers and BCDR was the same for FFDM vs FFDM + DBT (9.3/1000, McNemar p = 1). Moderate inter-reader agreement for diagnostic BI-RADS score was found for both study arms (ICC for FFDM and FFDM + DBT was 0.43, resp. 0.46). CONCLUSION: In this single institution study, supplemental screening with DBT in addition to standard FFDM did not increase BCDR in this higher-than-average BC risk group, objectively documented using the IBISrisk calculator.


Assuntos
Neoplasias da Mama , Mamografia , Sensibilidade e Especificidade , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Mamografia/métodos , Pessoa de Meia-Idade , Adulto , Idoso , Detecção Precoce de Câncer/métodos , Reprodutibilidade dos Testes , Estudos Prospectivos , Medição de Risco
7.
Br J Radiol ; 97(1155): 560-566, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38265303

RESUMO

OBJECTIVES: Quality assurance of breast imaging has a long history of using test objects to optimize and follow up imaging devices. In particular, the evaluation of new techniques benefits from suitable test objects. The applicability of a phantom consisting of spiculated masses to assess image quality and its dependence on dose in flat field digital mammography (FFDM) and digital breast tomosynthesis systems (DBT) is investigated. METHODS: Two spiculated masses in five different sizes each were created from a database of clinical tumour models. The masses were produced using 3D printing and embedded into a cuboid phantom. Image quality is determined by the number of spicules identified by human observers. RESULTS: The results suggest that the effect of dose on spicule detection is limited especially in cases with smaller objects and probably hidden by the inter-reader variability. Here, an average relative inter-reader variation of the counted number of 31% was found (maximum 83%). The mean relative intra-reader variability was found to be 17%. In DBT, sufficiently good results were obtained only for the largest masses. CONCLUSIONS: It is possible to integrate spiculated masses into a cuboid phantom. It is easy to print and should allow a direct and prompt evaluation of the quality status of the device by counting visible spicules. Human readout presented the major uncertainty in this study, indicating that automated readout may improve the reproducibility and consistency of the results considerably. ADVANCES IN KNOWLEDGE: A cuboid phantom including clinical objects as spiculated lesion models for visual assessing the image quality in FFDM and DBT was developed and is introduced in this work. The evaluation of image quality works best with the two larger masses with 21 spicules.


Assuntos
Neoplasias da Mama , Mamografia , Humanos , Feminino , Reprodutibilidade dos Testes , Mamografia/métodos , Mama/diagnóstico por imagem , Imagens de Fantasmas , Intensificação de Imagem Radiográfica/métodos , Neoplasias da Mama/diagnóstico por imagem
8.
Insights Imaging ; 14(1): 112, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37395919

RESUMO

PURPOSE: To compare photon-counting CT (PCCT) and multi-detector CT (MDCT) for visualization of temporal bone anatomic structures. METHODS: Thirty-six exams of temporal bones without pathology were collected from consecutive patients on a MDCT, and another 35 exams on a PCCT scanner. Two radiologists independently scored visibility of 14 structures for the MDCT and PCCT dataset, using a 5-point Likert scale, with a 2-month wash-out period. For MDCT, the acquisition parameters were: 110 kV, 64 × 0.6 mm (slice thickness reconstructed to 0.4 mm), pitch 0.85, quality ref. mAs 150, and 1 s rotation time; for PCCT: 120 kV, 144 × 0.2 mm, pitch 0.35, IQ level 75, and 0.5 s rotation time. Patient doses were reported as dose length product values (DLP). Statistical analysis was done using the Mann-Whitney U test, visual grading characteristic (VGC) analysis, and ordinal regression. RESULTS: Substantial agreement was found between readers (intraclass correlation coefficient 0.63 and 0.52 for MDCT and PCCT, resp.). All structures were scored higher for PCCT (p < 0.0001), except for Arnold's canal (p = 0.12). The area under the VGC curve was 0.76 (95% CI, 0.73-0.79), indicating a significantly better visualization on PCCT. Ordinal regression showed the odds for better visualization are 354 times higher (95% CI, 75-1673) in PCCT (p < 0.0001). Average (range) of DLP was 95 (79-127) mGy*cm for MDCT and 74 (50-95) mGy*cm for PCCT (p < 0.001). CONCLUSION: PCCT provides a better depiction of temporal bone anatomy than MDCT, at a lower radiation dose. CRITICAL RELEVANCE STATEMENT: PCCT provides a better depiction of temporal bone anatomy than MDCT, at a lower radiation dose. KEY POINTS: 1. PCCT allows high-resolution imaging of temporal bone structures. 2. Compared to MDCT, the visibility of normal temporal bone structures is scored better with PCCT. 3. PCCT allows to obtain high-quality CT images of the temporal bones at lower radiation doses than MDCT.

9.
Med Phys ; 50(8): 4816-4824, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37438921

RESUMO

BACKGROUND: Projection imaging phantoms are often optimized for 2-dimensional image characteristics in homogeneous backgrounds. Therefore, evaluation of image quality in tomosynthesis (DBT) lacks accepted and established phantoms. PURPOSE: We describe a 3D breast phantom with a structured, variable background. The phantom is an adaptable and advanced version of the L1 phantom by Cockmartin et al. Phantom design and its use for quality assurance measurements for DBT devices are described. Four phantoms were compared to assess the objectivity. METHODS: The container size was increased to a diameter of 24 cm and a total height of 53.5 mm. Spiculated masses were replaced by five additional non-spiculated masses for higher granularity in threshold diameter resolution. These patterns are adjustable to the imaging device. The masses were printed in one session with a base layer using two-component 3D printing. New materials compared to the L1 phantom improved the attenuation difference between the lesion models and the background. Four phantoms were built and intra-human observer, inter-human observer and inter-phantom variations were determined. The latter assess the reproducibility of the phantom production. Coefficients of variance (V) were calculated for all three variations. RESULTS: The difference of the attenuation coefficients between the lesion models and the background was 0.20 cm-1 (with W/Al at 32 kV, equivalent to 19-20 keV effective energy) compared to 0.21 cm-1 for 50/50 glandular/adipose breast tissue and cancerous lesions. PMMA equivalent thickness of the phantom was 47.0 mm for the Siemens Mammomat Revelation. For the masses, the V i n t r a $V_{intra}$ for the intra-observer variation was 0.248, the averaged inter-observer variation, V ¯ i n t e r $\overline{V}_{inter}$ was 0.383. V p h a n t o m $V_{phantom}$ for phantom variance was 0.321. For the micro-calcifications, V i n t r a $V_{intra}$ was 0.0429, V ¯ i n t e r = $\overline{V}_{inter}=$ 0.0731 and V p h a n t o m = $V_{phantom}=$ 0.0759. CONCLUSIONS: Position, orientation and shape of the masses are reproducible and attenuation differences appropriate. The phantom presented proved to be a candidate test object for quality control.


Assuntos
Mama , Mamografia , Humanos , Imagens de Fantasmas , Reprodutibilidade dos Testes , Incerteza , Mama/diagnóstico por imagem , Mamografia/métodos
10.
Phys Med Biol ; 68(11)2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37137317

RESUMO

Objective. Deep Learning models are often susceptible to failures after deployment. Knowing when your model is producing inadequate predictions is crucial. In this work, we investigate the utility of Monte Carlo (MC) dropout and the efficacy of the proposed uncertainty metric (UM) for flagging of unacceptable pectoral muscle segmentations in mammograms.Approach. Segmentation of pectoral muscle was performed with modified ResNet18 convolutional neural network. MC dropout layers were kept unlocked at inference time. For each mammogram, 50 pectoral muscle segmentations were generated. The mean was used to produce the final segmentation and the standard deviation was applied for the estimation of uncertainty. From each pectoral muscle uncertainty map, the overall UM was calculated. To validate the UM, a correlation between the dice similarity coefficient (DSC) and UM was used. The UM was first validated in a training set (200 mammograms) and finally tested in an independent dataset (300 mammograms). ROC-AUC analysis was performed to test the discriminatory power of the proposed UM for flagging unacceptable segmentations.Main results. The introduction of dropout layers in the model improved segmentation performance (DSC = 0.95 ± 0.07 versus DSC = 0.93 ± 0.10). Strong anti-correlation (r= -0.76,p< 0.001) between the proposed UM and DSC was observed. A high AUC of 0.98 (97% specificity at 100% sensitivity) was obtained for the discrimination of unacceptable segmentations. Qualitative inspection by the radiologist revealed that images with high UM are difficult to segment.Significance. The use of MC dropout at inference time in combination with the proposed UM enables flagging of unacceptable pectoral muscle segmentations from mammograms with excellent discriminatory power.


Assuntos
Aprendizado Profundo , Músculos Peitorais/diagnóstico por imagem , Incerteza , Redes Neurais de Computação , Mamografia/métodos , Processamento de Imagem Assistida por Computador/métodos
11.
Medicine (Baltimore) ; 101(9): e28950, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35244053

RESUMO

ABSTRACT: To characterize computed tomography (CT) findings of coronavirus disease 2019 (COVID-19) pneumonia and their value in outcome prediction.Chest CTs of 182 patients with a confirmed diagnosis of COVID-19 infection by real-time reverse transcription polymerase chain reaction were evaluated for the presence of CT-abnormalities and their frequency. Regarding the patient outcome each patient was categorized in 5 progressive stages and the duration of hospitalization was determined. Regression analysis was performed to find which CT findings are predictive for patient outcome and to assess prognostic factors for the hospitalization duration.Multivariate statistical analysis confirmed a higher age (OR = 1.023, P  =  .025), a higher total visual severity score (OR = 1.038, P  =  .002) and the presence of crazy paving (OR = 2.160, P  =  .034) as predictive parameters for patient outcome. A higher total visual severity score (+0.134 days; P  =  .012) and the presence of pleural effusion (+13.985 days, P  =  0.005) were predictive parameters for a longer hospitalization duration. Moreover, a higher sensitivity of chest CT (false negatives 10.4%; true positives 78.6%) in comparison to real-time reverse transcription polymerase chain reaction was obtained.An increasing percentage of lung opacity as well as the presence of crazy paving and a higher age are associated with a worse patient outcome. The presence of a higher total visual severity score and pleural effusion are significant predictors for a longer hospitalization duration. These results are underscoring the value of chest CT as a diagnostic and prognostic tool in the pandemic outbreak of COVID-19, to facilitate fast detection and to preserve the limited (intensive) care capacity only for the most vulnerable patients.


Assuntos
COVID-19/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Pneumonia/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Derrame Pleural , Estudos Retrospectivos , SARS-CoV-2
12.
Med Phys ; 38(12): 6659-71, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22149848

RESUMO

PURPOSE: This work proposes a new method of building 3D models of microcalcification clusters and describes the validation of their realistic appearance when simulated into 2D digital mammograms and into breast tomosynthesis images. METHODS: A micro-CT unit was used to scan 23 breast biopsy specimens of microcalcification clusters with malignant and benign characteristics and their 3D reconstructed datasets were segmented to obtain 3D models of microcalcification clusters. These models were then adjusted for the x-ray spectrum used and for the system resolution and simulated into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. Six radiologists were asked to distinguish between 40 real and 40 simulated clusters of microcalcifications in two separate studies on 2D mammography and tomosynthesis datasets. Receiver operating characteristic (ROC) analysis was used to test the ability of each observer to distinguish between simulated and real microcalcification clusters. The kappa statistic was applied to assess how often the individual simulated and real microcalcification clusters had received similar scores ("agreement") on their realistic appearance in both modalities. This analysis was performed for all readers and for the real and the simulated group of microcalcification clusters separately. "Poor" agreement would reflect radiologists' confusion between simulated and real clusters, i.e., lesions not systematically evaluated in both modalities as either simulated or real, and would therefore be interpreted as a success of the present models. RESULTS: The area under the ROC curve, averaged over the observers, was 0.55 (95% confidence interval [0.44, 0.66]) for the 2D study, and 0.46 (95% confidence interval [0.29, 0.64]) for the tomosynthesis study, indicating no statistically significant difference between real and simulated lesions (p > 0.05). Agreement between allocated lesion scores for 2D mammography and those for the tomosynthesis series was poor. CONCLUSIONS: The realistic appearance of the 3D models of microcalcification clusters, whether malignant or benign clusters, was confirmed for 2D digital mammography images and the breast tomosynthesis datasets; this database of clusters is suitable for use in future observer performance studies related to the detectability of microcalcification clusters. Such studies include comparing 2D digital mammography to breast tomosynthesis and comparing different reconstruction algorithms.


Assuntos
Doenças Mamárias/diagnóstico por imagem , Calcinose/diagnóstico por imagem , Imageamento Tridimensional/métodos , Mamografia/métodos , Modelos Biológicos , Intensificação de Imagem Radiográfica/métodos , Tomografia Computadorizada por Raios X/métodos , Simulação por Computador , Feminino , Humanos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
13.
Med Phys ; 48(10): 6270-6292, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34407213

RESUMO

PURPOSE: The aim of this study is to perform a test object-based comparison of the imaging performance of digital mammography (DM), digital breast tomosynthesis (DBT), and synthetic mammography (SM). METHODS: Two test objects were used, the CDMAM and the L1-structured phantom. Small-detail detectability was assessed using CDMAM and the microcalcification simulating specks in the L1-structured background. Detection of spiculated and non-spiculated mass-like objects was assessed using the L1 phantom. Six different systems were included: Amulet Innovality (Fujifilm), Senographe Pristina (GEHC), 3Dimensions (Hologic), Giotto Class (IMS), Clarity 2D/3D (Planmed), and Mammomat Revelation (Siemens). Images were acquired under automatic exposure control (AEC) and at adjusted levels of AEC/2 and 2 × AEC level. Threshold gold thickness (Ttr ) was established for the 0.13-mm-diameter CDMAM discs. Threshold diameters for the calcifications (dtr_c ), the spiculated masses (dtr_sm ), and for the non-spiculated masses (dtr_nsm ) were established. The threshold condition was defined as the thickness or diameter for a 62.5% correct score. RESULTS: Ttr for DM was generally superior to DBT, which in turn was superior to SM, but for most systems, these differences between modes were not significant. For L1, no significant differences in dtr_c were found between DM and DBT. The increase in dtr_c from DM to SM at AEC dose was 1%, 19%, 11%, 14%, 46%, and 27% for the Fujifilm, GEHC, Hologic, IMS, Planmed, and Siemens, respectively, indicating significantly poorer performance for all vendors except for Fujifilm, Hologic, and IMS. For both mass types, DBT performed better than SM, while SM showed no significant difference with DM (except for Fujifilm spiculated masses). The dose had an impact on small-detail detectability for both phantoms but did not influence the detection of either mass type. CONCLUSIONS: Both phantoms indicated potentially reduced small-detail detectability for SM versus DM and DBT and should therefore not be used in stand-alone mode. The L1 phantom demonstrated no significant difference in microcalcification detection between DM and DBT and also demonstrated the superiority of DBT, compared to DM for mass detection, for all six systems.


Assuntos
Doenças Mamárias , Neoplasias da Mama , Calcinose , Mama/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Calcinose/diagnóstico por imagem , Comércio , Feminino , Humanos , Mamografia , Imagens de Fantasmas
14.
J Belg Soc Radiol ; 105(1): 16, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33870080

RESUMO

OBJECTIVES: Fast diagnosis of Coronavirus Disease 2019 (COVID-19), and the detection of high-risk patients are crucial but challenging in the pandemic outbreak. The aim of this study was to evaluate if deep learning-based software correlates well with the generally accepted visual-based scoring for quantification of the lung injury to help radiologist in triage and monitoring of COVID-19 patients. MATERIALS AND METHODS: In this retrospective study, the lobar analysis of lung opacities (% opacities) by means of a prototype deep learning artificial intelligence (AI)-based software was compared to visual scoring. The visual scoring system used five categories (0: 0%, 1: 0-5%, 2: 5-25%, 3: 25-50%, 4: 50-75% and 5: >75% involvement). The total visual lung injury was obtained by the sum of the estimated grade of involvement of each lobe and divided by five. RESULTS: The dataset consisted of 182 consecutive confirmed COVID-19 positive patients with a median age of 65 ± 16 years, including 110 (60%) men and 72 (40%) women. There was a correlation coefficient of 0.89 (p < 0.001) between the visual and the AI-based estimates of the severity of lung injury. CONCLUSION: The study indicates a very good correlation between the visual scoring and AI-based estimates of lung injury in COVID-19.

15.
J Belg Soc Radiol ; 105(1): 39, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34250437

RESUMO

OBJECTIVES: To analyze computed tomography (CT) characteristics predictive for diagnostic accuracy and pneumothorax in CT fluoroscopy-guided transthoracic biopsy (CTF-TTB) of lung lesions using non-coaxial biopsy needle technique. METHODS: Retrospectively 274 lung lesion biopsies with confirmed histology were included in our study. CTF-TTB was done using an 18-gauge non-coaxial cutting needle. Diagnostic accuracy rates were calculated per lesion size and CT and procedural characteristics were evaluated for their predictive value regarding diagnostic accuracy and development of pneumothorax (maximal nodule diameter, distance to pleura, location per lung segment, nodule composition, benign versus malignant histology, and number of specimens). RESULTS: Overall diagnostic accuracy of CTF-TTB was high (93%). Diagnostic accuracy for lesions ≤10 mm was 81%. Maximal nodule diameter was the only predictive CT characteristic for diagnostic success (p = 0.03). Pneumothorax occurred in 27%. Distance of lesion to pleura was the only risk factor for pneumothorax (p < 0.00001). Pneumothorax rates were significantly lower in subpleural lesions (14%) compared to those located 1-10 mm (47%), 10-20 mm (33%), and >20 mm from pleura (29%). CONCLUSIONS: High diagnostic accuracy rates were achieved with CTF-TTB using non-coaxial biopsy technique, even for lesions ≤10 mm. Pneumothorax rates were comparable with other studies. Lesion size was the only predictive CT characteristic for diagnostic accuracy. Distance to pleura was the only risk factor for pneumothorax.

16.
J Belg Soc Radiol ; 105(1): 9, 2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33634237

RESUMO

PURPOSE: To investigate the role of low-dose chest computed tomography (CT) imaging in the triage of patients suspected of coronavirus disease 2019 (COVID-19) in an emergency setting. MATERIALS AND METHODS: Data from 610 patients admitted to our emergency unit from March 20, 2020, until April 11, 2020, with suspicion of COVID-19 were collected. Diagnostic values of low-dose chest CT for COVID-19 were calculated using consecutive reverse-transcription polymerase chain reaction (RT-PCR) tests and bronchoalveolar lavage (BAL) as reference. Comparative analysis of the 199 COVID-19 positive versus 411 COVID-19 negative patients was done with identification of risk factors and predictors of worse outcome. RESULTS: Sensitivity and specificity of low-dose CT for the diagnosis of COVID-19 respectively ranged from 75% (150/199) to 88% (175/199) and 94% (386/411) to 99% (386/389), depending on the inclusion of inconclusive results. On multivariate analysis, a higher body mass index (BMI), fever, and dyspnea on admission were risk factors for COVID-19 (all p-values < 0.05). The mortality rate was 12.6% (25/199). Higher age and high levels of C-reactive protein (CRP) and D-dimers were predictors of worse outcome (all p-values < 0.05). CONCLUSION: Low-dose chest CT has a high specificity and a moderate to high sensitivity in symptomatic patients with suspicion of COVID-19 and could be used as an effective tool in setting of triage in high-prevalence areas.

17.
Phys Med ; 89: 114-128, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34364255

RESUMO

BACKGROUND AND OBJECTIVE: The development, control and optimisation of new x-ray breast imaging modalities could benefit from a quantitative assessment of the resulting image textures. The aim of this work was to develop a software tool for routine radiomics applications in breast imaging, which will also be available upon request. METHODS: The tool (developed in MATLAB) allows image reading, selection of Regions of Interest (ROI), analysis and comparison. Requirements towards the tool also included convenient handling of common medical and simulated images, building and providing a library of commonly applied algorithms and a friendly graphical user interface. Initial set of features and analyses have been selected after a literature search. Being open, the tool can be extended, if necessary. RESULTS: The tool allows semi-automatic extracting of ROIs, calculating and processing a total of 23 different metrics or features in 2D images and/or in 3D image volumes. Computations of the features were verified against computations with other software packages performed with test images. Two case studies illustrate the applicability of the tool - (i) features on a series of 2D 'left' and 'right' CC mammograms acquired on a Siemens Inspiration system were computed and compared, and (ii) evaluation of the suitability of newly proposed and developed breast phantoms for x-ray-based imaging based on reference values from clinical mammography images. Obtained results could steer the further development of the physical breast phantoms. CONCLUSIONS: A new image analysis toolbox was realized and can now be used in a multitude of radiomics applications, on both clinical and test images.


Assuntos
Mamografia , Software , Algoritmos , Mama/diagnóstico por imagem , Simulação por Computador , Imagens de Fantasmas
18.
J Med Imaging (Bellingham) ; 8(Suppl 1): 013501, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33447646

RESUMO

Purpose: We describe the creation of computational models of lung pathologies indicative of COVID-19 disease. The models are intended for use in virtual clinical trials (VCT) for task-specific optimization of chest x-ray (CXR) imaging. Approach: Images of COVID-19 patients confirmed by computed tomography were used to segment areas of increased attenuation in the lungs, all compatible with ground glass opacities and consolidations. Using a modeling methodology, the segmented pathologies were converted to polygonal meshes and adapted to fit the lungs of a previously developed polygonal mesh thorax phantom. The models were then voxelized with a resolution of 0.5 × 0.5 × 0.5 mm 3 and used as input in a simulation framework to generate radiographic images. Primary projections were generated via ray tracing while the Monte Carlo transport code was used for the scattered radiation. Realistic sharpness and noise characteristics were also simulated, followed by clinical image processing. Example images generated at 120 kVp were used for the validation of the models in a reader study. Additionally, images were uploaded to an Artificial Intelligence (AI) software for the detection of COVID-19. Results: Nine models of COVID-19 associated pathologies were created, covering a range of disease severity. The realism of the models was confirmed by experienced radiologists and by dedicated AI software. Conclusions: A methodology has been developed for the rapid generation of realistic 3D models of a large range of COVID-19 pathologies. The modeling framework can be used as the basis for VCTs for testing detection and triaging of COVID-19 suspected cases.

19.
J Med Imaging (Bellingham) ; 8(2): 023505, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33937435

RESUMO

Purpose: The relevance of presampling modulation transfer function (MTF) measurements in digital mammography (DM) quality control (QC) is examined. Two studies are presented: a case study on the impact of a reduction in MTF on the technical image quality score and analysis of the robustness of routine QC MTF measurements. Approach: In the first study, two needle computed radiography (CR) plates with identical sensitivities were used with differences in the 50% point of the MTF ( f MTF 0.5 ) larger than the limiting value in the European guidelines ( > 10 % change between successive measurements). Technical image quality was assessed via threshold gold thickness of the CDMAM phantom and threshold microcalcification diameter of the L1 structured phantom. For the second study, presampling MTF results from 595 half-yearly QC tests of 55 DM systems (16 types, six manufacturers) were analyzed for changes from the baseline value and changes in f MTF 0.5 between successive tests. Results: A reduction of 20% in f MTF 0.5 of the two CR plates was observed. There was a tendency to a lower score for task-based metrics, but none were significant. Averaging over 55 systems, the absolute relative change in f MTF 0.5 between consecutive tests (with 95% confidence interval) was 3% (2.5% to 3.4%). Analysis of the maximum relative change from baseline revealed changes of up to - 10 % for one a-Se based system and - 15 % for a group of CsI-based systems. Conclusions: A limit of 10% is a relevant action level for investigation. If exceeded, then the impact on performance has to be verified with extra metrics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA